Environmental Science and Pollution Research

, Volume 23, Issue 2, pp 1312–1323 | Cite as

Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L.

  • Andrés Rodríguez-Seijo
  • Manoel Lago-Vila
  • María Luisa Andrade
  • Flora A. Vega
Research Article


Pb pollution caused by shooting sport activities is a serious environmental problem that has increased considerably in recent decades. The aims of this study were firstly to analyze Pb pollution in soils from a trap shooting range abandoned in 1999, secondly to study the effectiveness of different extractants [CaCl2, DTPA, NH4OAc, low molecular weight organic acids (LMWOA), and bidistilled water (BDW)] in order to determine Pb bioavailability in these soils, and finally to evaluate the phytoremediation ability of spontaneous vegetation (Agrostis capillaris L.). To this end, 13 soils from an old trap shooting range (Galicia, NW Spain) were studied. It was found that Pb levels in the soils were higher than 100 mg kg−1, exceeding the generic reference levels, and three of these samples even exceeded the USEPA threshold level (400 mg kg−1). In general, the reagent that best represents Pb bioavailability and has the greatest extraction efficiency was CaCl2, followed by DTPA, NH4OAc, LMWOA, and BDW. A. capillaris Pb contents ranged between 9.82 and 1107.42 mg kg−1 (root) and between 6.43 and 135.23 mg kg−1 (shoot). Pb accumulation in roots, as well as the presence of secondary mineral phases of metallic Pb in the adjacent soil, showed the phytostabilization properties of A. capillaris.


Agrostis capillaris Lead Pellets Phytostabilization Single extraction Shooting range 



This research was supported by MICIN-CGL2013-45494-R (Ministerio de Economía y Competitividad—Spain). F.A. Vega would like to thank the Ministry of Science and Innovation, and the University of Vigo for the Ramón y Cajal grant. A. Rodríguez Seijo was supported by a predoctoral contract funded by the Universidade de Vigo (P.P. 00VI 131H 64102). We are grateful to Club de Tiro Olímpico Cabe for their help with the sample collection.

Compliance with ethical standards

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. This research does not involve human participants and/or animals.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11356_2015_5340_MOESM1_ESM.pdf (89 kb)
ESM 1 (PDF 88 kb)


  1. Ahmad M, Lee SS, Moon DH, Yang JE, Ok YS (2012) A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In: Malik A, Grohmann E (Eds.) Environmental protection strategies for sustainable development, strategies for sustainability. New York, Springer, pp. 437–451. doi: 10.1007/978-94-007-1591-2_14
  2. Anjos C, Magalhães MC, Abreu MM (2012) Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Braçal abandoned lead mine area, Portugal. J Geochem Explor 113:45–55. doi: 10.1016/j.gexplo.2011.07.004 CrossRefGoogle Scholar
  3. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  4. Bennett JR, Kaufman CA, Koch CA, Koch I, Sova J et al (2007) Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Sci Total Environ 374:91–101. doi: 10.1016/j.scitotenv.2006.12.040 CrossRefGoogle Scholar
  5. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney RS (eds) Method of soil analysis: part 2. Chemical and microbiological properties. Agronomy monographs no. 9, 2nd edn. American Society of Agronomy, Madison, pp 595–624Google Scholar
  6. Cao X, Ma LQ, Chen M, Hardison DW Jr, Harris WG (2003a) Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ 307:179–189. doi: 10.1016/S0048-9697(02)00543-0 CrossRefGoogle Scholar
  7. Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003b) Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J Environ Qual 32:526–534. doi: 10.2134/jeq2003.5260 CrossRefGoogle Scholar
  8. Chaney RL (1989) Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow NJ, Goldshmid J (eds) Inorganic contaminants in the vadose zone. Springer, Berlin, pp 140–158CrossRefGoogle Scholar
  9. Cheragi M, Lorestani B, Khorasani N, Yousefi N, Karami M (2011) Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biol Trace Elem Res 144:1133–1141. doi: 10.1007/s12011-009-8359-0 CrossRefGoogle Scholar
  10. Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37–46. doi: 10.1007/s10661-009-0774-3 CrossRefGoogle Scholar
  11. Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns. I. Matrix-flushing method of quantitative multicomponent analysis. J Appl Crystallogr 7:513–519. doi: 10.1107/S0021889874010375 Google Scholar
  12. Conesa HM, Wieser M, Studer B, González-Alcaraz MN, Schulin R (2012) A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils. J Soils Sediments 12:565–575. doi: 10.1007/s11368-012-0478-0 CrossRefGoogle Scholar
  13. Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Mineral Mag 63:777–789. doi: 10.1180/002646199548880 CrossRefGoogle Scholar
  14. Craig JR, Edwards D, Rimstidt JD, Scanlon PF, Collins TK et al (2002) Lead distribution on a public shotgun range. Environ Geol 41:873–882. doi: 10.1007/s00254-001-0478-7 CrossRefGoogle Scholar
  15. De Koe T (1994) Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci Total Environ 145(1-2):103–109. doi: 10.1016/0048-9697(94)90300-X CrossRefGoogle Scholar
  16. Eriksson CP, Holmgren P (1996) Estimating stone and boulder content in forest soils—evaluating the potential of surface penetration methods. Catena 28:121–134. doi: 10.1016/S0341-8162(96)00031-8 CrossRefGoogle Scholar
  17. Expert Panel on Soil (2003) Manual on methods and criteria for harmonized sampling, assessment monitoring and analysis of the effects of air pollution on forests. Part IIIa, Sampling and analysis of soil. Int. co-operative programme on assessment and monitoring of air pollution effects on forests. Institute for Forestry and Game Management, BelgiumGoogle Scholar
  18. Feng MH, Shan XQ, Zhang SH, Wen B (2005) Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 59:939–949. doi: 10.1016/j.chemosphere.2004.11.056 CrossRefGoogle Scholar
  19. Guitart R, Mateo R (2006) El empleo de Plomo en deportes como causa de intoxicación y de contaminación. Apuntes de Ciencia y Tecnología 21:36–42 (in Spanish) Google Scholar
  20. Hardison DW Jr, Ma LQ, Luongo T, Harris WG (2004) Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Sci Total Environ 328:175–183. doi: 10.1016/j.scitotenv.2003.12.013 CrossRefGoogle Scholar
  21. Hartikainen H, Kerko E (2009) Lead in various chemical pools in soil depth profiles on two shooting ranges of different age. Boreal Environ Res 14 (suppl A.):61-69. doi:
  22. Hashimoto Y (2013) Field and laboratory assessments on dissolution and fractionation of Pb from spent and unspent shots in the rhizosphere soil. Chemosphere 93:2894–2900. doi: 10.1016/j.chemosphere.2013.08.095 CrossRefGoogle Scholar
  23. Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608. doi: 10.2136/sssaj1986.03615995005000030013x CrossRefGoogle Scholar
  24. Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant 31:1299–1396. doi: 10.1080/00103620009370514 CrossRefGoogle Scholar
  25. Kabata-Pendias A (2010) Trace elements in soils and plants 4th Ed. CRC Press.
  26. Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN et al (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92:336–342. doi: 10.1002/jsfa.4581 CrossRefGoogle Scholar
  27. Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of greenwaste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi: 10.1016/j.jhazmat.2011.04.025 CrossRefGoogle Scholar
  28. Knechtenhofer LA, Xifra IO, Scheinost AC, Fluhler H, Kretzschmar R (2003) Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. J Plant Nutr Soil Sci 166:84–92. doi: 10.1002/jpln.200390017 CrossRefGoogle Scholar
  29. Lago-Vila M, Arenas-Lago D, Andrade L, Vega FA (2014) Phytoavailable content of metals in soils from copper mine tailings (Touro mine, Galicia, Spain). J Geochem Explor 147:159–166. doi: 10.1016/j.gexplo.2014.07.001 CrossRefGoogle Scholar
  30. Lin Z (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden. Environ Geol 27:370–375. doi: 10.1007/BF00766707 CrossRefGoogle Scholar
  31. Lindsay WL, Norwell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x CrossRefGoogle Scholar
  32. Lobb AJ (2006) Potential for PAH contamination from clay target debris at shooting sites: review of literature on occurrence of site contamination from clay targets. Report No. U06/81. 18 June 2006. Environment Canterbury. New Zealand. Accessed 4 February 2015
  33. Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579. doi: 10.1038/35054664 CrossRefGoogle Scholar
  34. Ma LQ, Hardison DW Jr, Harris WG, Cao X, Zhou Q (2007) Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Pollut 187:297–307. doi: 10.1007/s11270-006-9198-7 CrossRefGoogle Scholar
  35. Macías F, Calvo de Anta R (2009) Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza en Suelos de Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible. Xunta de Galicia, Santiago de Compostela, Spain (in Spanish) Accessed 22 February 2015
  36. Malcová R, Vosátka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67. doi: 10.1016/S0929-1393(02)00160-9 CrossRefGoogle Scholar
  37. McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. New Jersey, John Wiley & Sons, Hoboken, New Jersey: Wiley-Interscience, Inc.Google Scholar
  38. Meers E, Samson R, Tack FMG, Ruttens A, Vandegehuchte M et al (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396. doi: 10.1016/j.envexpbot.2006.12.010 CrossRefGoogle Scholar
  39. Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S et al (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–890. doi: 10.1007/s11356-009-0252-z CrossRefGoogle Scholar
  40. Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130. doi: 10.1016/j.envpol.2006.03.021 CrossRefGoogle Scholar
  41. Miretzky P, Fernandez-Cirelli A (2008) Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6:121–133. doi: 10.1007/s10311-007-0133-y CrossRefGoogle Scholar
  42. Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils—why bother with speciation? Aust J Chem 56:77–91. doi: 10.1071/CH02226 CrossRefGoogle Scholar
  43. Novozamsky I, Lexmond THM, Houba VJG (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int J Environ An Ch 51:47–58. doi: 10.1080/03067319308027610 CrossRefGoogle Scholar
  44. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, part 2. Agron. Mongr.9, 2nd edn. ASA and SSSA, Madison, pp 403–430Google Scholar
  45. Peijnenburg WJG, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Safe 56:63–77. doi: 10.1016/S0147-6513(03)00051-4 CrossRefGoogle Scholar
  46. Perroy RL, Belby CS, Mertens CJ (2014) Mapping and modeling three-dimensional lead contamination in the wetland sediments of a former trap-shooting range. Sci Total Environ 487:72–81. doi: 10.1016/j.scitotenv.2014.03.102 CrossRefGoogle Scholar
  47. Pueyo M, López-Sánchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226. doi: 10.1016/j.aca.2003.10.047 CrossRefGoogle Scholar
  48. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, vol 68, NATO Sciences Series. Springer, New York, pp 25–52CrossRefGoogle Scholar
  49. Rooney CP, McLaren RG, Cresswell RJ (1999) Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Pollut 116:535–548. doi: 10.1023/A:1005181303843 CrossRefGoogle Scholar
  50. Rooney CP, McLaren RG, Condron LM (2007) Control of lead solubility in soil contaminated with lead shot: effect of soil pH. Environ Pollut 149:149–257. doi: 10.1016/j.envpol.2007.01.009 CrossRefGoogle Scholar
  51. Scheetz CD, Rimstidt JD (2009) Dissolution, transport, and fate of lead on a shooting range in the Jefferson National Forest near Blacksburg, VA, USA. Environ Geol 58:655–665. doi: 10.1007/s00254-008-1540-5 CrossRefGoogle Scholar
  52. Schwertfeger DM, Hendershot WH (2009) Determination of effective cation exchange capacity and exchange acidity by a one-step BaCl2 method. Soil Sci Soc Am J 73(3):737–743. doi: 10.2136/sssaj2008.0009 CrossRefGoogle Scholar
  53. SIGPAC (2014) Sistema de Información Geográfica de Parcelas Agrícolas. Ministerio de Agricultura Pesca y Alimentación. Accessed 14 January 2015
  54. Strømseng AE, Ljønes M, Bakka L, Mariussen E (2009) Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range. J Environ Monit 11:1259–1267. doi: 10.1039/b823194j CrossRefGoogle Scholar
  55. Thomas VG (2013) Lead-free hunting rifle ammunition: product availability, price, effectiveness, and role in global wildlife conservation. Ambio 42:737–745. doi: 10.1007/s13280-012-0361-7 CrossRefGoogle Scholar
  56. Thomas VG, Anderson DA (2014) Banning the use of lead shot—options for the International Olympic Committee. Environ Policy Law 43:300–306Google Scholar
  57. Turpeinen R, Salminen J, Kairesalo T (2000) Mobility and bioavailability of lead in contaminated boreal forest soil. Environ Sci Technol 34:5152–5156. doi: 10.1021/es001200d CrossRefGoogle Scholar
  58. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi: 10.1007/s10311-009-0268-0 CrossRefGoogle Scholar
  59. Vangronsveld J, Herzing R, Weyens N, Boulet J, Adriaesen K et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. doi: 10.1007/s11356-009-0213-6 CrossRefGoogle Scholar
  60. Vantelon S, Lanzirotti A, Scheinost AC, Kretzschmar R (2005) Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environ Sci Technol 39:4808–4815. doi: 10.1021/es0482740 CrossRefGoogle Scholar
  61. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38. doi: 10.1097/00010694-193401000-00003 CrossRefGoogle Scholar
  62. USEPA (2001) Lead; identification of dangerous levels of lead; final rule. 40 CFR part 745. Washington, DC: United States Environmental Protection Agency. Accessed 21 February 2015
  63. Xu D, Zhou P, Zhan J, Gao Y, Dou C et al (2013) Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotox Environ Saf 90:103–111. doi: 10.1016/j.ecoenv.2012.12.018 CrossRefGoogle Scholar
  64. Yin X, Saha UK, Ma LQ (2010) Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. J Hazard Mater 179:895–900. doi: 10.1016/j.jhazmat.2010.03.089 CrossRefGoogle Scholar
  65. Yoon J, Cao X, Zhou O (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. doi: 10.1016/j.scitotenv.2006.01.016 CrossRefGoogle Scholar
  66. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. doi: 10.1023/A:1022530217289 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrés Rodríguez-Seijo
    • 1
  • Manoel Lago-Vila
    • 1
  • María Luisa Andrade
    • 1
  • Flora A. Vega
    • 1
  1. 1.Department of Plant Biology and Soil ScienceUniversidade de VigoVigoSpain

Personalised recommendations