Environmental Science and Pollution Research

, Volume 23, Issue 1, pp 338–350 | Cite as

BMAA extraction of cyanobacteria samples: which method to choose?

  • Sandra Lage
  • Alfred Burian
  • Ulla Rasmussen
  • Pedro Reis Costa
  • Heléne Annadotter
  • Anna Godhe
  • Sara Rydberg
Research Article

Abstract

β-N-Methylamino-l-alanine (BMAA), a neurotoxin reportedly produced by cyanobacteria, diatoms and dinoflagellates, is proposed to be linked to the development of neurological diseases. BMAA has been found in aquatic and terrestrial ecosystems worldwide, both in its phytoplankton producers and in several invertebrate and vertebrate organisms that bioaccumulate it. LC-MS/MS is the most frequently used analytical technique in BMAA research due to its high selectivity, though consensus is lacking as to the best extraction method to apply. This study accordingly surveys the efficiency of three extraction methods regularly used in BMAA research to extract BMAA from cyanobacteria samples. The results obtained provide insights into possible reasons for the BMAA concentration discrepancies in previous publications. In addition and according to the method validation guidelines for analysing cyanotoxins, the TCA protein precipitation method, followed by AQC derivatization and LC-MS/MS analysis, is now validated for extracting protein-bound (after protein hydrolysis) and free BMAA from cyanobacteria matrix. BMAA biological variability was also tested through the extraction of diatom and cyanobacteria species, revealing a high variance in BMAA levels (0.0080–2.5797 μg g−1 DW).

Keywords

β-N-Methylamino-l-alanine Extraction Validation Cyanobacteria Diatoms 

Notes

Acknowledgments

We wish to thank the Swedish Research Council Formas for its financial support and the Baltic 2020 and Olle Engkvist Byggmästare foundations for funding the Acquity UPLC coupled to the Xevo-TQ-MS system (Waters) via the MiMeBS grant awarded to Birgitta Bergman. We are grateful to Nicola Wannicke of the Leibniz Institute for Baltic Sea Research, Germany and to Katja Pasdzierny of GEOMAR, Germany for isolating the diatom species from the Baltic Sea and North Sea samples.

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

11356_2015_5266_MOESM1_ESM.pptx (453 kb)
ESM 1 UPLC-MS/MS chromatograms (459.1 > 119.08 and 459.1 > 258.09 fragments) of protein fractions extracted with Method C (TCA protein precipitation method) followed by HCl hydrolysis and AQC derivatization (a) BMAA spiked (100 ng mL–1) in cyanobacteria blank matrix, i.e. Spirulina powder (Arthrospira fusiformis); BMAA detected in cultures of diatoms (b) Chaetoceros socialis SCCAP K-0550; (c) Coscinodiscus granii SCCAP K-1831 and (d) Phaeodactylum tricornutum SCCAP K-1280. (PPTX 452 kb)

References

  1. Al-Sammak M, Hoagland K, Cassada D, Snow D (2014) Co-occurrence of the cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6:488–508CrossRefGoogle Scholar
  2. Assmy P, Hernandez-Becerril DU, Montresor M (2008) Morphological variability and life cycle traits of the type species of the diatom genus Chaetoceros, C-dichaeta. J Phycol 44:152–163. doi: 10.1111/j.1529-8817.2007.00430.x CrossRefGoogle Scholar
  3. Banack SA, Cox PA (2003) Distribution of the neurotoxic nonprotein amino acid BMAA in Cycas micronesica. Bot J Linn Soc 143:165–168CrossRefGoogle Scholar
  4. Banack SA, Johnson HE, Cheng R, Cox PA (2007) Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs 5:180–196CrossRefGoogle Scholar
  5. Banack SA et al (2011) Distinguishing the cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) from other diamino acids. Toxicon 57:730–738. doi: 10.1016/j.toxicon.2011.02.005 CrossRefGoogle Scholar
  6. Baptista MS, Cianca RC, Lopes VR, Almeida CM, Vasconcelos VM (2011) Determination of the non protein amino acid beta-N-methylamino-l-alanine in estuarine cyanobacteria by capillary electrophoresis. Toxicon 58:410–414. doi: 10.1016/j.toxicon.2011.08.007 CrossRefGoogle Scholar
  7. Berntzon L, Erasmie S, Celepli N, Eriksson J, Rasmussen U, Bergman B (2013) BMAA inhibits nitrogen fixation in the cyanobacterium Nostoc sp. PCC 7120. Mar Drugs 11:3091–3108CrossRefGoogle Scholar
  8. Booth BC, Larouche P, Bélanger S, Klein B, Amiel D, Mei ZP (2002) Dynamics of Chaetoceros socialis blooms in the north water. Deep-Sea Res Pt II 49:5003–5025. doi: 10.1016/S0967-0645(02)00175-3 CrossRefGoogle Scholar
  9. Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244, http://www.nature.com/nature/journal/v456/n7219/suppinfo/nature07410_S1.html CrossRefGoogle Scholar
  10. Cohen SA (2012) Analytical techniques for the detection of alpha-amino-beta-methylaminopropionic acid. Analyst 137:1991–2005. doi: 10.1039/c2an16250d CrossRefGoogle Scholar
  11. Combes A, El Abdellaoui S, Sarazin C, Vial J, Mejean A, Ploux O, Pichon V (2013) Validation of the analytical procedure for the determination of the neurotoxin beta-N-methylamino-L-alanine in complex environmental samples. Anal Chim Acta 771:42–49. doi: 10.1016/j.aca.2013.02.016 CrossRefGoogle Scholar
  12. Council Directive 98/83/EC on the quality of water intended for human consumption (1998) vol OJ L 330. European CommissionGoogle Scholar
  13. Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci U S A 100:13380–13383CrossRefGoogle Scholar
  14. Cox PA et al (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102:5074–5078CrossRefGoogle Scholar
  15. Degerlund M, Eilertsen H (2010) Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic waters (68–80° N). Estuar Coast 33:242–269. doi: 10.1007/s12237-009-9167-7 CrossRefGoogle Scholar
  16. Downing S, Contardo-Jara V, Pflugmacher S, Downing TG (2014) The fate of the cyanobacterial toxin β-N-methylamino-l-alanine in freshwater mussels. Ecotox Environ Safe 101:51–58. doi: 10.1016/j.ecoenv.2013.11.028 CrossRefGoogle Scholar
  17. Duncan MW (1991) Role of the cycad neurotoxin BMAA in the amyotrophic lateral sclerosis-parkinsonism dementia complex of the western Pacific. Adv Neurol 56:301–310Google Scholar
  18. Eriksson J, Jonasson S, Papaefthimiou D, Rasmussen U, Bergman B (2009) Improving derivatization efficiency of BMAA utilizing AccQ-Tag in a complex cyanobacterial matrix. Amino Acids 36:43–48. doi: 10.1007/s00726-007-0023-4 CrossRefGoogle Scholar
  19. Esterhuizen M, Downing TG (2008) Beta-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotox Environ Saf 71:309–313CrossRefGoogle Scholar
  20. Esterhuizen-Londt M, Downing S, Downing T (2011) Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised 2-N-methylamino-L-alanine (BMAA) in cyanobacteria. Water SA 37:133–138CrossRefGoogle Scholar
  21. Faassen E (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins 6:1109–1138CrossRefGoogle Scholar
  22. Faassen EJ, Gillissen F, Zweers HAJ, Lürling M (2009) Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α-,γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10:79–84. doi: 10.3109/17482960903272967 CrossRefGoogle Scholar
  23. Faassen EJ, Gillissen F, Lurling M (2012) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One 7, e36667. doi: 10.1371/journal.pone.0036667 CrossRefGoogle Scholar
  24. Glover WB, Liberto CM, McNeil WS, Banack SA, Shipley PR, Murch SJ (2012) Reactivity of beta-Methylamino-l-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry. Anall Chem. doi: 10.1021/ac301691r Google Scholar
  25. Guidance for Industry - Bioanalytical Method Validation (2001). US Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Maryland, USAGoogle Scholar
  26. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239CrossRefGoogle Scholar
  27. Guo T, Geis S, Hedman C, Arndt M, Krick W, Sonzogni W (2007) Characterization of ethyl chloroformate derivative of beta-methylamino-L-alanine. J Am Soc Mass Spectr 18:817–825. doi: 10.1016/j.jasms.2007.01.006 CrossRefGoogle Scholar
  28. Hasle GR (1978) Phytoplankton Manual: the inverted microscope method. In: Sournia A (ed) Monographs on oceanic methodology. Unesco, Paris, pp 88–96Google Scholar
  29. Jiang L, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL (2012) Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 403:1719–1730. doi: 10.1007/s00216-012-5966-y CrossRefGoogle Scholar
  30. Jiang L, Johnston E, Aberg KM, Nilsson U, Ilag LL (2013) Strategy for quantifying trace levels of BMAA in cyanobacteria by LC/MS/MS. Anal Bioanal Chem 405:1283–1292. doi: 10.1007/s00216-012-6550-1 CrossRefGoogle Scholar
  31. Jiang L et al (2014) Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. Plos One 9, e84578. doi: 10.1371/journal.pone.0084578 CrossRefGoogle Scholar
  32. Jiao Y et al (2014) Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-l-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk. Sci Total Environ 468–469:457–463. doi: 10.1016/j.scitotenv.2013.08.064 CrossRefGoogle Scholar
  33. Johansen M, Mohlin, M., Skjevik, A.T., (2013) Algae report number 1–12 vol Algal situation in marine waters surrounding Sweden. Swedish Meteorological and Hydrological InstituteGoogle Scholar
  34. Jonasson S et al (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci U S A 107:9252–9257. doi: 10.1073/pnas.0914417107 CrossRefGoogle Scholar
  35. Kaloudis T, Triantis TM, Hiskia A (2014) Basic validation protocol for the analysis of cyanotoxins in environmemtal samples. Athens, GreeceGoogle Scholar
  36. Kruger T, Monch B, Oppenhauser S, Luckas B (2010) LC-MS/MS determination of the isomeric neurotoxins BMAA (beta-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55:547–557. doi: 10.1016/j.toxicon.2009.10.009 CrossRefGoogle Scholar
  37. Lage S, Costa PR, Moita T, Eriksson J, Rasmussen U, Rydberg SJ (2014) BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source. Aquat Toxicol 152C:131–138. doi: 10.1016/j.aquatox.2014.03.029 CrossRefGoogle Scholar
  38. Lage S, Annadotter H, Rasmussen U, Rydberg S (2015) Biotransfer of beta-N-Methylamino-l-alanine (BMAA) in a Eutrophicated Freshwater Lake. Mar Drugs 13:1185–1201. doi: 10.3390/md13031185 CrossRefGoogle Scholar
  39. Masseret E et al (2013) Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS One 8, e83406. doi: 10.1371/journal.pone.0083406 CrossRefGoogle Scholar
  40. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030CrossRefGoogle Scholar
  41. Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA (2008) Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10:702–708CrossRefGoogle Scholar
  42. Mondo K, Broc Glover W, Murch SJ, Liu G, Cai Y, Davis DA, Mash DC (2014) Environmental neurotoxins beta-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food Chem Toxicol 70:26–32. doi: 10.1016/j.fct.2014.04.015 CrossRefGoogle Scholar
  43. Murch SJ, Cox PA, Banack SA (2004) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc Natl Acad Sci U S A 101:12228–12231CrossRefGoogle Scholar
  44. Pablo J et al (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol Scand 120:216–225CrossRefGoogle Scholar
  45. Pan M, Mabry TJ, Cao P, Moini M (1997) Identification of nonprotein amino acids from cycad seeds as N-ethoxycarbonyl ethyl ester derivatives by positive chemical-ionization gas chromatography–mass spectrometry. J Chromatogr A 787:288–294CrossRefGoogle Scholar
  46. Réveillon D et al (2014) Beta-N-Methylamino-l-Alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a french mediterranean lagoon. Mar Drugs 12:5441–5467CrossRefGoogle Scholar
  47. Rines JEB, Hargraves PE (1988) The Chaetoceros Ehrenberg (Bacillariophyceae) Flora of Narragansett Bay, Rhode Island, U.S.A. J. CramerGoogle Scholar
  48. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  49. Rosen J, Hellenäs KE (2008) Determination of the neurotoxin BMAA (beta-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). Analyst 133:1785–1789CrossRefGoogle Scholar
  50. Ross SM, Seelig M, Spencer PS (1987) Specific antagonism of excitotoxic action of ‘uncommon’ amino acids assayed in organotypic mouse cortical cultures. Brain Res 425:120–127CrossRefGoogle Scholar
  51. Salomonsson M, Hansson A, Bondesson U (2013) Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry. Anal Method 5:4865–4874. doi: 10.1039/C3AY40657A CrossRefGoogle Scholar
  52. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartman J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & Fn Spon, London, pp 41–111Google Scholar
  53. Spacil Z, Eriksson J, Jonasson S, Rasmussen U, Ilag LL, Bergman B (2010) Analytical protocol for identification of BMAA and DAB in biological samples. Analyst 135:127–132CrossRefGoogle Scholar
  54. Spencer PS, Nunn PB, Hugon J, Ludolph A, Roy DN (1986) Motorneurone disease on Guam: possible role of a food neurotoxin. Lancet 1:965CrossRefGoogle Scholar
  55. Spencer PS, Hugon J, Ludolph A, Nunn PB, Ross SM, Roy DN, Schaumburg HH (1987) Discovery and partial characterization of primate motor-system toxins. Ciba Found Symp 126:221–238Google Scholar
  56. Trufelli H, Palma P, Famiglini G, Cappiello A (2011) An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom Rev 30:491–509. doi: 10.1002/mas.20298 CrossRefGoogle Scholar
  57. Van de Waal DB, Verspagen JMH, Lürling M, Van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335. doi: 10.1111/j.1461-0248.2009.01383.x CrossRefGoogle Scholar
  58. Van de Waal DB et al (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450. doi: 10.1038/ismej.2011.28 CrossRefGoogle Scholar
  59. Vega A, Bell A (1967) α-Amino- β- methylaminopropionic acid, a new amino acid from seeds of Cycas circinalis. Phytochem 6:759–762Google Scholar
  60. Viswanathan CT et al (2007) Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res 24:1962–1973. doi: 10.1007/s11095-007-9291-7 CrossRefGoogle Scholar
  61. Wasmund N, Pollehne F, Postel L, Siegel H, Zettler ML (2003) Biological state assessment of the Baltic Sea in 2002 vol 78. Institut fuer Ostseeforschung, WarnemuendeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sandra Lage
    • 1
  • Alfred Burian
    • 1
  • Ulla Rasmussen
    • 1
  • Pedro Reis Costa
    • 2
  • Heléne Annadotter
    • 3
  • Anna Godhe
    • 4
  • Sara Rydberg
    • 1
  1. 1.Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
  2. 2.IPMA – Instituto Português do Mar e da AtmosferaLisbonPortugal
  3. 3.Regito ABVittsjöSweden
  4. 4.Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden

Personalised recommendations