Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?

Abstract

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV–vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmad A, Mukherjee M, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces 28:313–318

  2. Ali AMA, Mozid MA, Yeasmin S, Khan AM, Sayeed MA (2008) An evaluation of antimicrobial activities of Mimusops elengi Linn. Res J Agric Biol Sci 4:871–874

  3. Amerasan D, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Subramaniam J, John William S, Hwang JS (2012) Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res 111:1953–1964

  4. Amerasan D, Murugan K, Panneerselvam C, Kanagaraju N, Kovendan K, Mahesh Kumar P (2015) Bioefficacy of Morinda tinctoria and Pongamia glabra plant extracts against the malaria vector Anopheles stephensi (Diptera: Culicidae). J Entomol Acarol Res 47(1986):31–40

  5. American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington

  6. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis and dengue. Vector Borne Zoontic Dis 12:262–268

  7. Arokiyaraj S, Dinesh Kumar V, Elakya V, Kamala T, Park SK, Ragam M, Saravanan M, Bououdina M, Arasu MV, Kovendan K, Vincent S (2015) Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—potential for malaria vector control. Environ Sci Pollut Res. doi:10.1007/s11356-015-4148-9

  8. Asmathunisha N, Kathiresan K, Anburaj, Nabeel MA (2010) Synthesis of antimicrobial silver nanoparticles by callus leaf extracts from salt marsh plant Sesuvium portulacastrum L. Coll Surf B Biointerfaces 79:488–493

  9. Baliga MS, Pai RJ, Bhat HP, Palatty PL, Baloor R (2011) Chemistry and medicinal properties of the Bakul (Mimusops elengi Linn): a review. Food Res Int 44:1823–1829

  10. Bar H, Dipak Bhui KR, Gobinda Sahoo P, Sarkar P (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139

  11. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res. doi:10.1007/s00436-015-4586-9

  12. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

  13. Benelli G (2015c) Plant-synthesized nanoparticles in the fight against mosquito vectors: an eco-friendly tool against mosquito vectors? In: Mehlhorn H (ed) Nanoparticles in the fight against parasites, Parasitology Research Monographs. Springer, Berlin, ISSN: 2192-3671

  14. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovi-deterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236

  15. Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res. doi:10.1007/s00436-014-4267-0

  16. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

  17. Chandra G, Bhattacharjee I, Chatterjee SN, Ghosh A (2008) Mosquito control by larvivorous fish. Indian J Med Res 127:13–27

  18. Chobu M, Nkwengulila G, Mahande AM, Mwang’onde BJ, Kweka EJ (2015) Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Acta Trop 142:131–137

  19. Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G (2013) Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res 112:991–999

  20. Das MK, Prasad RN (1991) Evaluation of mosquito fish Gambusia affinis in the control of mosquito breeding in rice fields. Indian J Malariol 28:171–177

  21. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

  22. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Biostruct 4:537–543

  23. Fayaz AM, Balaji K, GirilalM YR, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

  24. Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

  25. Gadamsetty G, Lakshmipathy R, Sarada NC (2013) Phytochemical analysis and in-vitro anthelmintic activity of Mimusops elengi Linn and Drypetes sepiaria. Int J Pharm Pharm Sci 5:126–128

  26. Ganu GP, Jadhav SS, Deshpande AD (2010) Antioxidant and Antihyperglycemic potential of methanolic extract of bark of Mimusops elengi in mice. Res J Pharm Biol Chem Sci 1:67–77

  27. Gayatri G, Aniket G, Vicky A, Ujwala S, Suresh J, Ajay K (2011) Anti-anxiety activity of Mimusops elengi barks extract in experimental animals. Res J Pharm Biol Chem Sci 2:405–410

  28. Gerberich JB, Laird M (1985) Larvivorous fish in the biocontrol of mosquitoes with a selected bibliography of recent literature. In: Laird M, Miles JB (eds) Integrated mosquito control methodologies, vol 2, Biocontrol and other innovative components and future directions. Academic, London, pp 47–76

  29. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

  30. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

  31. Gratz NS, Legner EF, Meffe GK, Bay EC, Service MW, Swanson C et al (1996) Comments on adverse assessment of Gambusia affinis. J Am Mosq Control Assoc 12:160–166

  32. Griffin LF, Knight JM (2012) A review of the role of fish as biological control agents of disease vector mosquitoes in mangrove forests: reducing human health risks while reducing environmental risk. Wetl Ecol Manag 20:243–252

  33. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

  34. Jahan N, Ahmed W, Malik A (1995) New steroidal glycosides from Mimusops elengi. J Nat Prod 8:1244–1247

  35. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

  36. Kamareddine L (2012) The biological control of the malaria vector. Toxins 4:748–767

  37. Krishnan R, Maru GB (2006) Isolation and analysis of polymeric polyphenol fractions from black tea. Food Chem 94:331–340

  38. Kweka E, Zhou G, Gilbreath T, Afrane Y, Nyindo M, Githeko A, Yan G (2011) Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasit Vect 4:128

  39. Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al (2014) Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop 132S:S2–S11

  40. Louca V, Lucas MC, Green C, Majambere S, Fillinger U, Lindsay SW (2009) Roleof fish as predators of mosquito larvae on the floodplain of the Gambia river. J Med Entomol 46:546–556

  41. Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica 299:142–146

  42. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Vishnu Kirthi A, Jayaseelan C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549

  43. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

  44. Mitra R (1981) Bakula—a reputed drug of Ayurveda, its history, uses in Indian medicine. Indian J Hist Sci 12:169–180

  45. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagia K, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

  46. Murugan K, Jeyabalan D, Senthilkumar N, Babu R, Sivaramakrishnan S (1996) Antipupational effect of neem seed kernel extract against mosquito larvae of Anopheles stephensi (liston). J Entomol Res 20:137–139

  47. Murugan K, Vahitha V, Baruah I, Das SC (2003) Integration of botanicals and microbial pesticides for the control of filarial vector, Culex quinquefasciatus. Ann Med Entomol 12:11–23

  48. Murugan K, Mahesh Kumar P, Kovendan K, Amerasan D, Subrmaniam J, Shiou HJ (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111:1757–1769

  49. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res. doi:10.1007/s00436-015-4417-z

  50. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

  51. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi:10.1007/ s00436-015-4582-0

  52. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi:10.1007/s11356-015-4920-x

  53. Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Mahesh Kumar P, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015e) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-015-4593-x

  54. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res

  55. Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res. doi:10.1007/s00436-015-4368-4

  56. Naresh Kumar A, Murugan K, Baruah I, Madhiyazhagan P, Nataraj T (2012) Larvicidal potentiality, longevity and fecundity inhibitory activities of Bacillus sphaericus (Bs G3-IV) on vector mosquitoes, Aedes aegypti and Culex quinquefasciatus. J Entomol Acarol Res 44:79–84

  57. Nicoletti M, Mariani S, Maccioni O, Coccioletti T, Murugan K (2012) Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol Res 111:205–2013

  58. Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM (2006) The effect of gain and absorption on surface plasmon in metal nanoparticles. Appl Phys B 86:458–460

  59. Ohba SY, Kawada H, Dida GO, Juma D, Sonye G, Minakawa N, Takagi M (2010) Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in wetlands, Western Kenya: confirmation by polymerase chain reaction method. J Med Entomol 47:783–787

  60. Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692

  61. Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109

  62. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562

  63. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187

  64. Payal JS, Mitesh SG, Mamta BS, Sunita SG, Santani D (2003) Study of Mimusops elengi bark in experimental gastric ulcers. J Ethnopharmacol 89:305–311

  65. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyarajb S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Coll Surf B Biointerfaces 108:255–259

  66. Priyadarshini A, Murugan K, Panneerselvam C, Ponarulselvam S, Jiang-Shiou H, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006

  67. Purnima A, Koti BC, Thippeswamy AHM, Jaji MS, Viswanatha Swamy AHM, Kurhe YV, Jaffar Sadiq A (2010) Anti-inflammatory, analgesic and antipyretic activities of Mimusops elengi Linn. Indian J Pharm Sci 72:480–485

  68. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

  69. Ramesh Kumar K, Nattuthurai, Gopinath P, Mariappan T (2014) Biosynthesis of silver nanoparticles from Morinda tinctoria leaf extract and their larvicidal activity against Aedes aegypti Linnaeus 1762. J Nanomed Nanotechnol 5(6):1–5

  70. Rao JV, Kavitha P (2010) In vitro effects of chlorpyrifos on the acetylcholinesteraseactivity of euryhaline fish, Oreochromis mossambicus. Z Naturforsch C 65:303–306

  71. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622

  72. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

  73. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2015.07.005

  74. Ruikar AD, Pawar PV, Sen A, Phalgune UD, Puranik VG, Deshpande NR (2012) Larvicidal potential of Mimusops elengi against Aedes aegypti (L) and Culex quinquefasciatus (Say). J Vector Borne Dis 49:111–113

  75. Rupp HR (1996) Adverse assessment of Gambusia affinis an alternative view for mosquito control practitioners. J Am Mosq Control Assoc 12:155–166

  76. Sakthivadivel M, Thilagavathy D (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl Entomol Zool 43:57–63

  77. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

  78. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

  79. Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

  80. Schwarz D (2000) Water clarification using Moringa oleifera gate information service. Technical Information W1e Eschborn, Germany, http://www.gtz.de/gate/gateid.afp pp. 1–7

  81. Sivapriyajothi S, Mahesh Kumar P, Kovendan K, Subramaniam J, Murugan K (2014) Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, aedes aegypti and anopheles stephensi. J Entomol Acarol Res 46:1787

  82. Subramaniam J, Murugan K, Kovendan K (2012a) Larvicidal and pupcidal efficacy of Momordica charantia leaf extract and bacterial insecticide, Bacillus thuringiensis against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). J Biopest 5S:163–169

  83. Subramaniam J, Kovendan K, Mahesh Kumar P, Murugan K, Walton W (2012b) Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi J Biol Sci 19:503–509

  84. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

  85. Tietze NS, Hester PG, Olson MA, Hallmon CF, Shaffer KR (1994) Acute toxicity of mosquito control compounds to Cyprinodon variegatus and Menidia beryllina laboratory and field tests. J Fla Anti-Mosq 65:37–44

  86. Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096

  87. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113:2363–2373

  88. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

  89. Voyadjoglou A, Roussis V, Petrakis PV (2007) Biological control of mosquito populations: an applied aspect of pest control by means of natural enemies. In: Elewa AMT (ed) Predation in organisms: a distinct phenomenon. Springer, Berlin, pp 123–149

  90. Walton WE (2007) Larvivorous fish including Gambusia. AMCA Bulletin No. 7 23:186–220

  91. WHO (1981) Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. WHO/VBC/81–807, Geneva

  92. WHO (2012) Handbook for integrated vector management. World Health Organization, Geneva

  93. WHO (2014) Malaria. Fact sheet N°94

  94. Yap H (1985) Biological control of mosquitoes, especially malaria vectors, Anopheles species. Southeast Asian J Trop Med Public Health 16:163–172

Download references

Acknowledgments

Philippe Garrigues and three anonymous reviewers improved an earlier version of the manuscript. Russell H. Messing was supported by the USDA National Institute of Food and Agriculture, Hatch project 9023R. Jayapal Subramaniam is grateful to the University Grant Commission, New Delhi, India (UGC-BSR-RFSMS- Research Fellowship in Science for Meritorious Students) for providing financial support. This study was supported by King Saud University, Deanship of Scientific Research, and College of Sciences Research Center. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Correspondence to Giovanni Benelli.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, J., Murugan, K., Panneerselvam, C. et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?. Environ Sci Pollut Res 22, 20067–20083 (2015). https://doi.org/10.1007/s11356-015-5253-5

Download citation

Keywords

  • Aedes aegypti
  • Anopheles stephensi
  • Biological control
  • Dengue
  • Green-synthesis
  • Malaria
  • Nanobiotechnology
  • EDX
  • FTIR
  • TEM-EDX
  • XRD