Environmental Science and Pollution Research

, Volume 22, Issue 20, pp 16215–16228

A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France

  • Christian Mougin
  • Didier Azam
  • Thierry Caquet
  • Nathalie Cheviron
  • Samuel Dequiedt
  • Jean-François Le Galliard
  • Olivier Guillaume
  • Sabine Houot
  • Gérard Lacroix
  • François Lafolie
  • Pierre-Alain Maron
  • Radika Michniewicz
  • Christian Pichot
  • Lionel Ranjard
  • Jacques Roy
  • Bernd Zeller
  • Jean Clobert
  • André Chanzy
Research and Education Highlights

Abstract

The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long-term experiments. AnaEE-France also provides shared instruments and analytical platforms dedicated to environmental (micro) biology. Finally, AnaEE-France provides users with data bases and modeling tools designed to represent ecosystem dynamics and to go further in coupling ecological, agronomical, and evolutionary approaches. In particular, AnaEE-France offers adequate services to tackle the new challenges of research in ecotoxicology, positioning its various types of platforms in an ecologically advanced ecotoxicology approach. AnaEE-France is a leading international infrastructure, and it is pioneering the construction of AnaEE (Europe) infrastructure in the field of ecosystem research. AnaEE-France infrastructure is already open to the international community of scientists in the field of continental ecotoxicology.

Keywords

Ecotoxicology Ecotrons Environmental simulations Environmental survey Process measurements Genetic resources Biochemical markers Environmental stressors Higher tier testing Ecologically-based procedures Mesocosms Information system Modeling 

References

  1. Barsi A, Jager T, Collinet M, Lagadic L, Ducrot V (2014) Considerations for test design to accommodate energy-budget models in ecotoxicology: a case study for acetone in the pond snail Lymnaea stagnalis. Environ Toxicol Chem 33:1466–1475CrossRefGoogle Scholar
  2. Bayona Y, Roucaute M, Cailleaud K, Bassères A, Lagadic L, Caquet T (2014) Isotopic niche metrics as indicators of toxic stress in two freshwater snails. Sci Total Environ 484:102–113CrossRefGoogle Scholar
  3. Beaumelle L, Lamy I, Cheviron N, Hedde M (2014) Is there a relationship between earthworm energy reserves and metal availability after exposure to feld-contaminated soils? Environ Pollut 191:182–189CrossRefGoogle Scholar
  4. Blottière L, Rossi M, Madricardo F, Hulot FD (2014) Modeling the role of wind and warming on Microcystis aeruginosa blooms in shallow lakes with different trophic status. Theor Ecol 7:35–52CrossRefGoogle Scholar
  5. Calow P, Forbes VE (2014) Ecotoxicology. In: eLS 2014, John Wiley & Sons Ltd: Chichester http://www.els.net/ [DOI: 10.1002/9780470015902.a0003245.pub2] Ecotoxicology
  6. Capowiez Y, Rault M, Mazzia C, Lhoutellier C, Houot S (2009) Etude des effets des apports de produits résiduaires organiques sur la macrofaune lombricienne en conditions de grandes cultures. Etude et Gestion des Sols 16:175–185Google Scholar
  7. Caquet T (2013) Aquatic mesocosms in ecotoxicology. In: Férard J-F, Blaise C (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, The Netherlands, pp 99–108CrossRefGoogle Scholar
  8. Caquet T, Lagadic L, Sheffield S (2000) Mesocosms in ecotoxicology (1): outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38Google Scholar
  9. Caquet T, Lagadic L, Monod G, Lacaze J-C, Couté A (2001) Variability of physico-chemical and biological parameters between replicated outdoor freshwater lentic mesocosms. Ecotoxicology 10:51–66CrossRefGoogle Scholar
  10. Corbel S, Mougin C, Martin-Laurent F, Crouzet O, Bru D, Nélieu S, Bouaïcha N (2015) Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil-plant system. Chemosphere 128:332–340CrossRefGoogle Scholar
  11. Coulis M, Fromin N, David JF, Gavinet J, Clet A, Devidal S, Roy J, Hättenschwiler S (2015) Functional dissimilarity across trophic levels as a driver of soil processes in a Mediterranean decomposer system exposed to two moisture levels. Oikos. doi:10.1111/oik.01917 Google Scholar
  12. Coutellec M-A, Barata C (2011) An introduction to evolutionary processes in ecotoxicology. Ecotoxicology 20:493–496CrossRefGoogle Scholar
  13. Coutellec M-A, Collinet M, Caquet T (2011) Parental exposure to pesticides and progeny reaction norm to a biotic stress gradient in the freshwater snail Lymnaea stagnalis. Ecotoxicology 20:524–524CrossRefGoogle Scholar
  14. de Santiago-Martín A, Cheviron N, Quintana JR, González C, Lafuente AL, Mougin C (2013) Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area. Arch Environ Contam Toxicol 64:388–398CrossRefGoogle Scholar
  15. European Commission (2003) Technical Guidance Document (TGD) on Risk Assessment of Chemical Substances, 2nd edn. European Chemical Bureau, Joint Research Centre, Luxembourg, LuxembourgGoogle Scholar
  16. European Commission (2013) SCHER, SCENIHR, SCCS Opinion on: Addressing the New Challenges for Risk Assessment. European Commission, Brussels, Belgium, p 154Google Scholar
  17. Gorzerino C, Quemeneur A, Hillenweck A, Delous G, Ollitrault M, Azam D, Caquet T, Cravedi J-P, Lagadic L (2009) Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms. Ecotoxicol Environ Saf 72:802–810CrossRefGoogle Scholar
  18. Hanson ML, Graham DW, Babin E, Azam D, Coutellec M-A, Knapp CW, Lagadic L, Caquet T (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environ Toxicol Chem 26:1265–1279CrossRefGoogle Scholar
  19. Harrault L, Allard B, Mériguet J, Carmignac D, Huon S, Gauzens B, Lacroix G (2014) Bottom-up effects of lake sediment on pelagic compartments: a mesocosm study. Freshwater Biol 59:1695–1709CrossRefGoogle Scholar
  20. Heugens EHW, Hendriks AJ, Dekker T, Van Straalen NM, Admiraal W (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284CrossRefGoogle Scholar
  21. Houot S, Cambier P, Benoit P, Bodineau G, Deschamps M, Jaulin A, Lhoutellier C, Barriuso E (2009) Effet d'apports de composts sur la disponibilité de micropolluants métalliques et organiques dans un sol cultivé. Etude et Gestion des Sols 16:255–274Google Scholar
  22. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197CrossRefGoogle Scholar
  23. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47CrossRefGoogle Scholar
  24. Lawton JH (1996) The Ecotron facility at Silwood Park: the value of “big bottle” experiments. Ecology 77:665–669CrossRefGoogle Scholar
  25. Lawton JH, Naeem S, Woodfin RM, Brown VK, Gange A, Godfray HJC, Heads PA, Lawler S, Magda D, Thomas CD, Thompson LJ, Young S (1993) The Ecotron - a controlled environmental facility for the investigation of population and ecosystem processes. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 341:181–194CrossRefGoogle Scholar
  26. Leyval C, Steinberg C, Norini MP, Beguiristain T, Edel-Hermann V, Leglize P, Gautheron N, Lebeau T, Houot S (2009) Impact d'amendements organiques sur la structure des communautés microbiennes des sols: Choix des méthodes, validation et résultats. Etude et Gestion des Sols 16:299–312Google Scholar
  27. Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton, NJ, USA, p 297Google Scholar
  28. Madin J, Bowers S, Schildhauer M, Krivov S, Pennington D, Villa F (2007) An ontology for describing and synthesizing ecological observation data. Ecological Informatics 2:279–296CrossRefGoogle Scholar
  29. Milcu A, Roscher C, Gessler A, Bachmann D, Gockele A, Guderle M, Landais D, Piel C, Escape C, Devidal S, Ravel O, Buchmann N, Gleixner G, Hildebrandt A, Roy J (2014) Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters 17:435–444CrossRefGoogle Scholar
  30. Morin FER, Dequiedt S, Koyao-Darinest V, Toutain B, Terrat S, Lelièvre M, Nowak V, Faivre-Primot C, Lemanceau P, Maron PA, Ranjard L (2013) MicroSol database, le Premier Système d’Information Environnemental sur la Microbiologie des Sols. Etude et Gestion des Sols 20:27–38Google Scholar
  31. Osmond B, Ananyev G, Berry J, Langdon C, Kolber Z, Lin GH, Monson R, Nichol C, Rascher U, Schurr U, Smith S, Yakir D (2004) Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biol 10:393–407CrossRefGoogle Scholar
  32. Pauget B, Gimbert F, Coeurdassier M, Crini N, Pérès G, Faure O, Douay F, Hitmi A, Beguiristain T, Alaphilippe A, Guernion M, Houot S, Legras M, Vian JF, Hedde M, Bispo A, Grand C, de Vaufleury A (2013) Ranking field site management priorities according to their metal transfer to snails. Ecol Indic 29:445–454CrossRefGoogle Scholar
  33. Pelosi C, Bertrand M, Makowski D, Roger-Estrade J (2008) WORMDYN: a model of Lumbricus terrestris population dynamics in agricultural fields. Ecol Model 218:219–234CrossRefGoogle Scholar
  34. Pelosi C, Lebrun M, Beaumelle L, Cheviron N, Delarue G, Nélieu S (2015) Sublethal effects of epoxiconazole on the earthworm Aporrectodea icterica. Environ Science Pollut Res (in press)Google Scholar
  35. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st Century. Science 330:1503–1509CrossRefGoogle Scholar
  36. Pérès G, Vandenbulcke F, Guernion M, Hedde M, Beguiristain T, Douay F, Houot S, Piron D, Richard A, Bispo A, Grand C, Galsomies L, Cluzeau D (2011) Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France). Pedobiologia 54:S77–S87CrossRefGoogle Scholar
  37. Plassart P, Terrat S, Griffiths R, Thomson B, Dequiedt S, Lelievre M, Regnier T, Nowak V, Bailey M, Lemanceau P, Bispo A, Chabbi A, Maron PA, Mougel C, Ranjard L (2012) Evaluation of the ISO Standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure. PLoS One 7, e44279CrossRefGoogle Scholar
  38. Riah W, Laval K, Laroche-Ajzenberg E, Mougin C, Latour X, Trinsoutrot-Gattin I (2014) Effects of pesticides on soil enzymatic activities: general trends. Env Chem Lett 12:257–273CrossRefGoogle Scholar
  39. Rustad LE (2008) The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404:222–235CrossRefGoogle Scholar
  40. Stewart RIA, Dossena M, Bohan DA, Jeppesen E, Kordas RL, Ledger ME, Meerhoff M, Moss B, Mulder C, Shurin JB, Suttle B, Thompson R, Trimmer M, Woodward G, Guy W, Eoin JOG (2013) Mesocosm experiments as a tool for ecological climate change research. Adv Ecol Res 48:71–181CrossRefGoogle Scholar
  41. Stokstad E (2005) Ecology - taking the pulse of earth's life-support systems. Science 308:41–43CrossRefGoogle Scholar
  42. Terrat S, Christen R, Dequiedt S, Lelievre M, Nowak V, Bachar D, Plassart P, Wincker P, Jolivet C, Bispo A, Lemanceau P, Maron PA, Mougel C, Ranjard L (2012) Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol 5:135–141CrossRefGoogle Scholar
  43. Terrat S, Plassart P, Bourgeois E, Ferreira S, Dequiedt S, Adele-Dit-De-Renseville N, Lemanceau P, Bispo A, Chabbi A, Maron PA, Ranjard L (2015) Meta-barcoded evaluation of the ISO Standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microbial Biotech 8:131–142CrossRefGoogle Scholar
  44. Van Straalen NM (2003) Ecotoxicology becomes stress ecology. Environ Sci Technol 37:324A–330ACrossRefGoogle Scholar
  45. Verdier B, Jouanneau I, Simonnet B, Rabin C, Van Dooren T, Delpierre N, Clobert J, Abbadie L, Ferrière R, Le Galliard JF (2014) Climate and atmosphere simulator for experiments on ecological systems in changing environments. Environ Sci Technol 48:8744–8753CrossRefGoogle Scholar
  46. Vighi M, Villa S (2013) Ecotoxicology: the challenges for the 21st century. Toxics 1:18–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Mougin
    • 8
    • 13
  • Didier Azam
    • 1
  • Thierry Caquet
    • 3
  • Nathalie Cheviron
    • 8
  • Samuel Dequiedt
    • 10
  • Jean-François Le Galliard
    • 5
    • 6
  • Olivier Guillaume
    • 4
  • Sabine Houot
    • 7
  • Gérard Lacroix
    • 5
    • 6
  • François Lafolie
    • 2
  • Pierre-Alain Maron
    • 10
  • Radika Michniewicz
    • 4
  • Christian Pichot
    • 9
  • Lionel Ranjard
    • 10
  • Jacques Roy
    • 11
  • Bernd Zeller
    • 12
  • Jean Clobert
    • 4
  • André Chanzy
    • 2
  1. 1.INRA, UE 1036 U3ERennes CedexFrance
  2. 2.INRA/UAPV, UMR 1114 EMMAH, Site AgroparcAvignon Cédex 9France
  3. 3.INRA, UAR1275 Département EFPAChampenouxFrance
  4. 4.CNRS, USR 2936 SEEMMoulisFrance
  5. 5.CNRS/UPMC – UMR 7618, IEES Paris, Université Pierre et Marie Curie, Case 237ParisFrance
  6. 6.CNRS/ENS – UMS 3194, CEREEP – Ecotron Ile-De-France, École Normale SupérieureSt-Pierre-lès-NemoursFrance
  7. 7.INRA/AgroParisTech, UMR 1402 ECOSYSThiverval-GrignonFrance
  8. 8.INRA/AgroParisTech, UMR1402 ECOSYS, Platform Biochem-EnvVersailles cedexFrance
  9. 9.INRA, UR0629 URFM, Site AgroparcAvignon Cédex 9France
  10. 10.INRA/Université de Bourgogne/AgroSup Dijon, UMR 1347 AgroécologieDijon cedexFrance
  11. 11.CNRS, UPS 3248 Ecotron Européen de Montpellier, Campus de BaillarguetMontferrier-sur-LezFrance
  12. 12.INRA, UR 1138 BEFChampenouxFrance
  13. 13.INRA/AgroParisTech, UMR1402 ECOSYS, Platform Biochem-EnvVersailles cedexFrance

Personalised recommendations