Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 4, pp 3036–3041 | Cite as

Oxidoreductases provide a more generic response to metallic stressors (Cu and Cd) than hydrolases in soil fungi: new ecotoxicological insights

  • Jérémie D. LebrunEmail author
  • Nathalie Demont-Caulet
  • Nathalie Cheviron
  • Karine Laval
  • Isabelle Trinsoutrot-Gattin
  • Christian Mougin
ECOTOX, the INRA's network of ecotoxicologists

Abstract

The present study investigates the effect of metals on the secretion of enzymes from12 fungal strains maintained in liquid cultures. Hydrolases (acid phosphatase, β-glucosidase, β-galactosidase, and N-acetyl-β-glucosaminidase) and ligninolytic oxidoreductases (laccase, Mn, and lignin peroxidases) activities, as well as biomass production, were measured in culture fluids from fungi exposed to Cu or Cd. Our results showed that all fungi secreted most of the selected hydrolases and that about 50 % of them produced a partial oxidative system in the absence of metals. Then, exposure of fungi to metals led to the decrease in biomass production. At the enzymatic level, Cu and Cd modified the secretion profiles of soil fungi. The response of hydrolases to metals was contrasted and complex and depended on metal, enzyme, and fungal strain considered. By contrast, the metals always stimulated the activity of ligninolytic oxidoreductases in fungal strains. In some of them, oxidoreductases were specifically produced following metal exposure. Fungal oxidoreductases provide a more generic response than hydrolases, constituting thus a physiological basis for their use as biomarkers of metal exposure in soils.

Keywords

Hydrolases Ligninolytic oxidoreductases Metals Biomarkers Secretion profiles Ecotoxicology 

Notes

Acknowledgments

The present study was supported by INRA and the Conseil Régional de Haute Normandie. The authors thank Ph.D. C. Steinberg and C. Héraud (UMR 1347 Agroécologie, INRA, Dijon, France) for their valuable information about the MIAE collection and Ph.D. C. Novotny (Institute of Microbiology, Prague, Czech Republic) for providing the strain of I. lacteus.

References

  1. Akmal M, Xu J, Li Z et al (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508–514CrossRefGoogle Scholar
  2. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91Google Scholar
  3. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefGoogle Scholar
  4. Baldrian P, Valášková V, Merhautová V et al (2005) Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol 156:670–676CrossRefGoogle Scholar
  5. Borgia PI, Mehnert DW (1982) Purification of a soluble and a wall-bound form of beta-glucosidase from Mucor racemosus. J Bacteriol 149:515–522Google Scholar
  6. Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl Environ Microb 67:2088–2094CrossRefGoogle Scholar
  7. Dhouib A, Hamza M, Zouari H et al (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microbiol Biotechnol 21:1415–1423CrossRefGoogle Scholar
  8. Floch C, Alarcon-Gutiérrez E, Criquet S (2007) ABTS assay of phenol oxidase activity in soil. J Microbiol Methods 71:319–324CrossRefGoogle Scholar
  9. Gianfreda L, Rao MA, Piotrowska A et al (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341:265–279CrossRefGoogle Scholar
  10. Giardina P, Palmieri G, Scaloni A et al (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus1. Biochem J 341:655–663Google Scholar
  11. Heijerick DG, Van Sprang PA, Van Hyfte AD (2006) Ambient copper concentrations in agricultural and natural European soils: an overview. Environ Toxicol Chem 25:858–864CrossRefGoogle Scholar
  12. Johansson T, Nyman PO (1996) A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38CrossRefGoogle Scholar
  13. Kovacs K, Macrelli S, Szakacs G et al (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:14CrossRefGoogle Scholar
  14. Lebrun JD, Trinsoutrot-Gattin I, Laval K et al (2010) Insights into the development of fungal biomarkers for metal ecotoxicity assessment: case of Trametes versicolor exposed to copper. Environ Toxicol Chem 29:902–908CrossRefGoogle Scholar
  15. Lebrun JD, Demont-Caulet N, Cheviron N et al (2011a) Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: a study of enzymatic system in Trametes versicolor. Chemosphere 82:340–345CrossRefGoogle Scholar
  16. Lebrun JD, Lamy I, Mougin C (2011b) Favouring the bioavailability of Zn and Cu to enhance the production of lignin-modifying enzymes in Trametes versicolor cultures. Bioresour Technol 102:3103–3109CrossRefGoogle Scholar
  17. Lebrun JD, Trinsoutrot-Gattin I, Vinceslas-Akpa M et al (2012) Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under long-term different land uses. Soil Biol Biochem 49:150–156CrossRefGoogle Scholar
  18. Nannipieri P, Ascher J, Ceccherini MT et al (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  19. Novotný Č, Cajthaml T, Svobodová K et al (2009) Irpex lacteus, a white-rot fungus with biotechnological potential—review. Folia Microbiologica 54:375–390CrossRefGoogle Scholar
  20. Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390:53–57CrossRefGoogle Scholar
  21. Riah W, Laval K, Laroche-Ajzenberg E et al (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett 12:257–273CrossRefGoogle Scholar
  22. Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F et al (2015) Soil microbial community structure and function relationships: a heat stress experiment. Appl Soil Ecol 86:121–130CrossRefGoogle Scholar
  23. Uhnáková B, Petříčková A, Biedermann D et al (2009) Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere 76:826–832CrossRefGoogle Scholar
  24. Verdin A, Sahraoui AL-H, Durand R (2004) Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegr 53:65–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jérémie D. Lebrun
    • 1
    • 2
    • 3
    Email author
  • Nathalie Demont-Caulet
    • 3
    • 4
  • Nathalie Cheviron
    • 3
  • Karine Laval
    • 2
  • Isabelle Trinsoutrot-Gattin
    • 2
  • Christian Mougin
    • 3
    • 5
  1. 1.Irstea, UR HBAN—EcotoxicologyAntony CedexFrance
  2. 2.Esitpa-Ecole d’Ingénieurs en AgricultureMont-Saint-AignanFrance
  3. 3.INRA, UMR 1402 ECOSYSVersailles CedexFrance
  4. 4.Sorbonne Paris CitéUniversité Paris DiderotParisFrance
  5. 5.AgroParisTech, UMR1402 ECOSYSVersailles CedexFrance

Personalised recommendations