Environmental Science and Pollution Research

, Volume 22, Issue 23, pp 19157–19169 | Cite as

Metal bioaccumulation pattern by Cotylorhiza tuberculata (Cnidaria, Scyphozoa) in the Mar Menor coastal lagoon (SE Spain)

  • Ana Muñoz-Vera
  • Gregorio García
  • Antonio García-Sánchez
Research Article


Coastal lagoons are ecosystems highly vulnerable to human impacts because of their situation between terrestrial and marine environment. Mar Menor coastal lagoon is one of the largest lagoons of the Mediterranean Sea, placed in SE Spain and subjected to major human impacts, in particular the mining of metal sulphides. As a consequence, metal concentration in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, the present study has assessed the ability of Cotylorhiza tuberculata for bioaccumulating metals from sea water. Up to 65 individuals were sampled at 8 different sampling stations during the summer of 2012. Although the concentration values for different elements considered were moderate (Pb: 0.04-29.50 ppm, Zn: 2.27-93.44 ppm, Cd: 0-0.67 ppm, As: 0.56-130.31 ppm) by dry weight of the jellyfish tissues (bell and oral arms combined), bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content because of their potential environmental and health implications.


Jellyfish Coastal lagoon Heavy metals Pollution Bioindicator Polimetallic mining areas 



Authors thank to Fundación Séneca for funding project 12038/PI/09. We thank the collaboration of J.M. Peñas, J.J. Saura, R. Baños, M. Saura and B. Villaescusa who helped us to improve this research and to Mr. and Mrs. Purves for their English grammar supervision.


  1. Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc U K 85:523–536. doi: 10.1017/S0025315405011458 CrossRefGoogle Scholar
  2. Bautista EG, Sánchez-Badorrey E, Díez-Minguito M, Losada MA, Baraza F (2007) Modelo de gestión integral del Mar Menor (I): modelo de circulación de la laguna y tramo litoral próximo. IX Jornadas Españolas de Costas y Puertos. San Sebastián, SpainGoogle Scholar
  3. Bresler V, Abelson A, Fishelson L, Feldstein T, Rosenfeld M, Mokady O (2003) Marine molluscs in environmental monitoring I. Cellular and molecular responses. Helgolander Marine Research 57:157–165. doi: 10.1007/s10152-003-0151-5 CrossRefGoogle Scholar
  4. CARM (2013) Memoria de actividades del Servicio de Pesca y Acuicultura de la Comunidad Autónoma de la Región de Murcia, año 2012. Consejería de Agricultura y Agua de la Región de Murcia. 25 p.
  5. Carreño MF, Esteve MA, Martínez J, Palazón JA, Pardo MT (2008) Habitat changes in coastal wetlands associated to hydrological changes in the watershed. Estuar Coast Shelf Sci 77:475–483. doi: 10.1016/j.ecss.2007.10.026 CrossRefGoogle Scholar
  6. Chapman PM (1995) Ecotoxicology and pollution – Key issues. Mar Pollut Bull 31:167–177. doi: 10.1016/0025-326X(95)00101-R CrossRefGoogle Scholar
  7. Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22. doi: 10.1897/1551-5028(2001)020<0003:ASCIE>2.0.CO;2 CrossRefGoogle Scholar
  8. Cimino G, Alfa M, La Spada G (1983) Trace elements in tentacles from the jellyfish Pelagia noctiluca. Mar Pollut Bull 14:197–198CrossRefGoogle Scholar
  9. Coquery M, Cossa D, Sanjuan J (1997) Speciation and sorption of mercury in two macro-tidal estuaries. Mar Chem 58(1–2):213–227. doi: 10.1016/S0304-4203(97)00036-4 CrossRefGoogle Scholar
  10. Creighton N, Twining J (2010) Bioaccumulation from food and water of cadmium, selenium and zinc in an estuarine fish, Ambassis jacksoniensis. Mar Pollut Bull 60:1815–1821. doi: 10.1016/j.marpolbul.2010.05.025 CrossRefGoogle Scholar
  11. Depledge MH, Rainbow PS (1990) Models of regulation and accumulation of trace metals in marine invertebrates. Comp Biochem Physiol 97C:1–7Google Scholar
  12. Estes AM, Kempf SC, Henry RP (2003) Localization and quantification of carbonic anhydrase activity in the symbiotic scyphozoan Cassiopea xamachana. Biol Bull 204:278–289CrossRefGoogle Scholar
  13. Franco I, Gili JM (1989) Some aspects on the biology of Aurelia aurita in the coastal lagoon Mar Menor. SE Spain. In: Proceedings of 5th international conference on coelenterate biology, SouthamptonGoogle Scholar
  14. Fuentes V, Straehler-Pohl I, Atienza D, Franco I, Tilves U, Gentile M, Acevedo M, Olariaga A, Gili JM (2011) Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and interannual variability along the Catalan coast and the Mar Menor (Spain, NW Mediterranean). Mar Biol 158:2247–2266. doi: 10.1007/s00227-011-1730-7 CrossRefGoogle Scholar
  15. Fukuda Y, Naganuma T (2001) Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar Biol 138:1029–1035. doi: 10.1007/s002270000512 CrossRefGoogle Scholar
  16. Furla P, Allemand D, Orsenigo M (2000) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiotic photosynthesis. American Journal of Physiology–Regulatory, Integrative and Comparative. Physiology 278:870–881Google Scholar
  17. Harrison NM (1984) Predation on jellyfish and their associates by seabirds. Limnol Oceanogr 29:1335–1337CrossRefGoogle Scholar
  18. Hay S (2006) Marine ecology: Gelatinous bells may ring change in marine ecosystems. Current Biology 16. Issue 17:R679–R682. doi: 10.1016/j.cub.2006.08.010 Google Scholar
  19. Hodgkin EP (1994) Estuaries and coastal lagoons. In: Hammond LS, Synott RN (eds) Marine Biology. Longman Cheshire, Melbourne, pp 97–114Google Scholar
  20. Kingsford MJ, Pitt KA, Gillanders BM (2000) Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanogr Mar Biol Annu Rev 38:85–156Google Scholar
  21. LaJeunesse TC, Loh W, Trench RK (2009) Do introduced endosymbiotic dinoflagellates ‘take’ to new hosts? Biol Invasions 11:995–1003. doi: 10.1007/s10530-008-9311-5 CrossRefGoogle Scholar
  22. Lucas CH, Horton AA (2014) Short-term effects of the heavy metals, silver and copper, on polyps of the common jellyfish, Aurelia aurita. J Exp Mar Biol Ecol 461:154–161. doi: 10.1016/j.jembe.2014.08.003 CrossRefGoogle Scholar
  23. Marín-Guirao L, Cesar A, Marín A, Lloret J, Vita R (2005) Establishing the ecological quality status of soft-bottom mining-impacted coastal water bodies in the scope of the Water Framework Directive. Mar Pollut Bull 50:374–387. doi: 10.1016/j.marpolbul.2004.11.019 CrossRefGoogle Scholar
  24. Marín-Guirao L, Lloret J, Marín A, García G, García AJ (2007) Pulse-discharges of mining wastes into a coastal lagoon: Water chemistry and toxicity. Chem Ecol 23(3):217–231. doi: 10.1080/02757540701339422 CrossRefGoogle Scholar
  25. Martínez-Alvarez V, Gallego-Elvira B, Maestre-Valero JF, Tanguy M (2011) Simultaneous solution for water, heat and salt balances in a Mediterranean coastal lagoon (Mar Menor, Spain). Estuar Coast Shelf Sci 91(2):250–261. doi: 10.1016/j.ecss.2010.10.030 CrossRefGoogle Scholar
  26. Moreno-Grau MD (2003) Metales. In: Moreno-Grau MD (ed) Toxicología Ambiental. Evaluación de riesgos para la salud humana. McGraw-Hill, Madrid (España), pp 198–235Google Scholar
  27. Mwanamoki PM, Devarajan N, Thevenon F, Birane N, de Alencastro LF, Grandjean D, Mpiana PT, Prabakar K, Mubedi JI, Kabele CG, Wildi W, Poté J (2014) Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects. Chemosphere 111:485–492. doi: 10.1016/j.chemosphere.2014.04.083 CrossRefGoogle Scholar
  28. Pérez-Ruzafa A (1989) Estudio ecológico y bionómico de los poblamientos bentónicos del Mar Menor (Murcia, SE de España). Ph. D. Thesis, University of MurciaGoogle Scholar
  29. Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475:359–369. doi: 10.1023/A:1020343510060 CrossRefGoogle Scholar
  30. Perrault JR (2014) Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): A cause for concern in this species? Mar Environ Res 99:160–169. doi: 10.1016/j.marenvres.2014.04.011 CrossRefGoogle Scholar
  31. Pitt KA, Kingsford MJ (2003) Temporal and spatial variation in recruitment and growth of medusae of the jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Freshw Res 54:117–125. doi: 10.1071/MF02110 CrossRefGoogle Scholar
  32. Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149. doi: 10.1007/s10750-008-9584-9 CrossRefGoogle Scholar
  33. Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216:335–342. doi: 10.1007/BF00026483 CrossRefGoogle Scholar
  34. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44. doi: 10.1023/A:1011883905394 CrossRefGoogle Scholar
  35. Rainbow PS, Phillips DJH (1993) Cosmopolitan biomonitors of trace-metals. Mar Pollut Bull 26:593–601. doi: 10.1016/0025-326X(93)90497-8 CrossRefGoogle Scholar
  36. Reizopoulou S, Thessalou-Legaki M, Nicolaidou A (1996) Assessment of disturbance in Mediterranean lagoons: an evaluation of methods. Mar Biol 125:189–197. doi: 10.1007/BF00350773 CrossRefGoogle Scholar
  37. Romeo M, Gnassia-Barelli M, Carre C (1992) Importance of gelatinous plankton organisms in storage and transfer of trace-metals in the northwestern Mediterranean. Mar Ecol Prog Ser 82:267–274. doi: 10.3354/meps082267 CrossRefGoogle Scholar
  38. Ruus A, Schaanning M, Oxnevad S, Hylland K (2005) Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat Toxicol 72:273–292. doi: 10.1016/j.aquatox.2005.01.004 CrossRefGoogle Scholar
  39. Sadiq M (1992) Toxic Metal Chemistry in Marine Environments. CRC Press, New York, p 392Google Scholar
  40. Sánchez M (2008) Estudi de la mobilitat i biodisponibilitat de pol-luents en la zona minera del Camp de Cartagena. Ph.D. Thesis, Universitat de Girona, Spain, p 199Google Scholar
  41. Simoneau J (1973) Mar Menor: Evolution sedimentologique et geochimique recente du remplissage. Thesis, Université Paul Sebatier de Tolouse, FranceGoogle Scholar
  42. Stebbing ARD (1981) Hormesis – Stimulation of colony growth in Campanularia flexuosa (Hydrozoa) by copper, cadmium and other toxicants. Aquat Toxicol 1:227–238. doi: 10.1016/0166-445X(81)90017-5 CrossRefGoogle Scholar
  43. Stebbing ARD (2002) Tolerance and hormesis—increased resistance to copper in hydroids linked to hormesis. Mar Environ Res 54:805–809. doi: 10.1016/S0141-1136(02)00119-8 CrossRefGoogle Scholar
  44. Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72. doi: 10.1016/j.marenvres.2009.08.001 CrossRefGoogle Scholar
  45. Templeman MA, Kingsford MJ (2012) Variation in soft tissue chemistry among scyphozoan and cubozoan jellyfishes from the Great Barrier Reef, Australia. Hydrobiologia 690:279–290. doi: 10.1007/s10750-012-1051-y CrossRefGoogle Scholar
  46. Yang M, Jiang L, Huang H, Zeng S, Qiu F, Yu M, Li X, Wei S (2014) Dietary exposure to aluminium and health risk assessment in the residents of Shenzhen, China. PLoS One 9(3):e89715. doi: 10.1371/journal.pone.0089715 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ana Muñoz-Vera
    • 1
  • Gregorio García
    • 1
  • Antonio García-Sánchez
    • 2
  1. 1.Área de Edafología y Química Agrícola, Departamento de Ciencia y Tecnología AgrariaTechnical University of Cartagena (UPCT)CartagenaSpain
  2. 2.Área de Tecnología del Medio Ambiente, Departamento de Ingeniería Química y AmbientalTechnical University of Cartagena (UPCT)CartagenaSpain

Personalised recommendations