Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 23, pp 19170–19183 | Cite as

Characterisation of CIME, an experimental chamber for simulating interactions between materials of the cultural heritage and the environment

  • A. ChabasEmail author
  • A. Fouqueau
  • M. Attoui
  • S. C. Alfaro
  • A. Petitmangin
  • A. Bouilloux
  • M. Saheb
  • A. Coman
  • T. Lombardo
  • N. Grand
  • P. Zapf
  • R. Berardo
  • M. Duranton
  • R. Durand-Jolibois
  • M. Jerome
  • E. Pangui
  • J. J. Correia
  • I. Guillot
  • S. Nowak
Research Article

Abstract

An approach consisting in combining in situ and laboratory experiments is often favoured for investigating the mechanisms involved in the weathering of the materials of the cultural heritage. However, the realistic simulation in the laboratory of the environmental conditions ruling the interactions of atmospheric compounds with materials is a very complex task. The aim of this work is to characterise CIME, a new chamber specially built to simulate the interactions between materials of the cultural heritage and the environment. The originality of this instrument is that beside the usual climatic parameters (temperature, relative humidity, solar radiation) and gaseous pollutants, it also allows the controlled injection of different types of particulate matter such as terrigenous, marine and anthropogenic. Therefore, varied realistic atmospheric environments (marine or urban) can be easily simulated within CIME. In addition to the technical description of CIME, this paper shows the first results obtained by the impact of gaseous pollutants on non-durable glass, bronze and limestone. The first experiments for the deposition of different particles (calcite, clays, soot and halite) are also presented.

Keywords

Weathering Materials Laboratory experiment Gas Particles Atmospheric chamber 

Notes

Acknowledgements

The work described in this paper was supported by the Programme National de Recherche pour la Connaissance et la Conservation du patrimoine (French Ministery of Culture and Communication) and by the ADEME (French Environment and Energy Management Agency). Moreover, the authors would like to acknowledge the LAPA for the Raman analyses, “les argiles vertes du Velay” for providing clays and Paccard and Cornille-Havard foundries for providing bronzes.

References

  1. Anses (2013) Concentrations de CO2 dans l’air intérieur et effets sur la santé. Avis de l’Anses. Rapport d’expertise collective. Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travailGoogle Scholar
  2. Ausset P, Crovisier JL, Del Monte M, Furlan V, Girardet F, Hammecker C, Jeannette D, Lefevre R (1996) Experimental study of limestone and sandstone sulphation in polluted realistic conditions: the Lausanne atmospheric simulation chamber (LASC). Atmos Environ 30(18):3197–3207CrossRefGoogle Scholar
  3. Ausset P, Del Monte M, Lefèvre R (1999) Embryonic sulphated black crusts in atmospheric simulation chamber and in the field: role of the carbonaceous fly-ash. Atmos Environ 33(10):1525–1534CrossRefGoogle Scholar
  4. Barthazy E, Stetzer O, Derungs C, Saathoff H, Lohmann U (2006) Water uptake of soot particles emitted from a Jing-CAST soot generator. 12th Conference on Cloud Physics, Cloud Physics Poster Session I 2006Google Scholar
  5. Brimblecombe P (2011) Environment and architectural stone. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 4th edn. Springer, Berlin, pp 317–346CrossRefGoogle Scholar
  6. Chabas A, Jeannette D, Lefèvre R (2000) Crystallization and dissolution of airborne sea-salts on weathered marble in a coastal environment. Atmos Environ 34(2):219–224CrossRefGoogle Scholar
  7. Chabas A, Alfaro S, Lombardo T, Verney-Carron A, Da Silva E, Triquet S, Cachier H, Leroy E (2014) Long term exposure of self-cleaning and reference glass in an urban environment: a comparative assessment. Build Environ 79:57–65CrossRefGoogle Scholar
  8. Gentaz L (2011) Simulation et modélisation de l’altération des verres de composition médiévale dans l’atmosphère urbaine. Ph-D of Paris-Est Créteil University, p 239Google Scholar
  9. Gentaz L, Lombardo T, Chabas A, Loisel C, Verney-Carron A (2012) Impact of neocrystallisations on the SiO2-K2O-CaO glass degradation due to atmospheric dry depositions. Atmos Environ 55:459–466CrossRefGoogle Scholar
  10. Ghedini N, Ozga I, Bonazza A, Dilillo M, Cachier H, Sabbioni C (2011) Atmospheric aerosol monitoring as a strategy for the preventive conservation of urban monumental heritage: the Florence Baptistery. Atmos Environ 45(33):5979–5987CrossRefGoogle Scholar
  11. GIEC (2013), Report—climate change: the physical science basis 2013; 33. www.climatechange2013.org/report/
  12. Grossi CM, Esber RM, Diaz-Pache F, Alonso FJ (2003) Soiling of building stones in urban environments. Build Environ 38:147–159CrossRefGoogle Scholar
  13. Grzywacz CM (2006) Monitoring for gaseous pollutants in museum environment. Tools for conservation. The Getty Conservation Institute. J Paul Getty Trust (ed), p 176Google Scholar
  14. Hanef SJ, Johnson JB, Dickinson C, Thompson GE, Wood GC (1992) Effect of dry deposition of NOx and SO2 gaseous pollutants on the degradation of calcareous building stones. Atmos Environ 26A(16):2963–2974CrossRefGoogle Scholar
  15. Hench LL, Clark A (1978) Physical chemistry of glass surface. J Non-Cryst Solids 28:83–105CrossRefGoogle Scholar
  16. Hussein T, Hruska A, Dohanyosova P, Dzumbova L, Hemerka J, Kulmala M, Smolik J (2009) Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber. Atmos Environ 43:905–914CrossRefGoogle Scholar
  17. Kucera V (2005) Model for multi-pollutant impact and assessment of threshold levels for cultural heritage, EU 5FP RTD Project EVK-4-CT-2001-00044. Publishable final report; 52 pagesGoogle Scholar
  18. Kucera V, Fitz S (1995) Direct and indirect air pollution effects on materials including cultural monuments. Water Air Soil Pollut 85:153–165CrossRefGoogle Scholar
  19. Lanting RW (1986) Black smoke and soiling. In: Lee SD, Grant LD, Verkerk PJ (eds) Aerosols. Lewis Publisher, Chelsea, pp 923–932Google Scholar
  20. Massey SW (1999) The effects of ozone and NOx on the deterioration of calcareous stone. Sci Total Environ 227:109–121CrossRefGoogle Scholar
  21. Pesava P, Aksu R, Toprak S, Horvath H, Seidl S (1999) Dry deposition of particles to building surfaces and soiling. Sci Total Environ 235:25–35CrossRefGoogle Scholar
  22. Pio CA, Ramos MM, Duarte AC (1998) Atmospheric aerosol and soiling of external surface in urban environment. Atmos Environ 32(11):1979–1989CrossRefGoogle Scholar
  23. Robinet L, Eremin K, Coupry C, Hall C, Lacome N (2007) Effect of organic vapors on the alteration of soda silicate glass. J Non-Cryst Solids 353:1546–1559CrossRefGoogle Scholar
  24. Rodriguez-Navarro C, Sebastian E (1996) Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulphation. Sci Total Environ 187:79–91CrossRefGoogle Scholar
  25. Rozenbaum O, Barbanson L, Muller F, Bruand A (2008) Significance of a combined approach for replacement stones in the heritage buildings’ conservation frame. Compt Rendus Geosci 340(6):345–355CrossRefGoogle Scholar
  26. Saathoff H, Blatt N, Gimmler M, Linke C, Schurath U (1999) Measurement of soot (ambient air)—thermographic determination of elemental carbon after thermal desorption of organic carbon. VDI/DIN-Handbuch Reinhaltung der Luft, band 4, VDI 2465 part 2. Beuth, BerlinGoogle Scholar
  27. Sabbioni C (2003) Mechanisms of air pollution damage to stone. In: Brimblecombe P (ed) Air Pollution reviews. The effects of air pollution on the built environment. Imperial College Press, London, pp 63–106CrossRefGoogle Scholar
  28. Saheb M, Mertz JD, Colas E, Rozenbaum O, Chabas A, Michelin A, Verney-Carron A, Sizun JP (2013) Multiscale characterization of limestone used on monuments of cultural heritage MRS Symposium. Boston>Google Scholar
  29. Screpanti A, De Marco A (2009) Corrosion on cultural heritage buildings in Italy: a role for ozone? Environ Pollut 157(5):1513–1520CrossRefGoogle Scholar
  30. Steiger M (2003) Salts and crusts. In: Brimblecombe P (ed) Air pollution reviews. The effects of air pollution on the built environment. Imperial College Press, London, pp 133–181CrossRefGoogle Scholar
  31. Strandberg H, Johansson LG, Lindqvist O (1997) The atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Mater Corros 48:721–730CrossRefGoogle Scholar
  32. Tétreault J, Dupont AL, Bégin P, Paris S (2013) The impact of volatile compounds released by paper on cellulose degradation in ambient hygrothermal conditions. Polym Degrad Stab 98:1827–1837CrossRefGoogle Scholar
  33. Tidblad J, Kucera V (2003) Air pollution damage to metals. In: Brimblecombe P (ed) Air pollution reviews. The effects of air pollution on the built environment. Imperial College Press, London, pp 227–247CrossRefGoogle Scholar
  34. Unterwurzacher M, Mirwald P (2008) Initial stages of carbonate weathering: climate chamber studies under realistic pollution conditions. Environ Geol 56:507–519CrossRefGoogle Scholar
  35. Urosevica M, Yebra-Rodríguez A, Sebastián-Pardo E, Cardell C (2012) Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (S Spain). Sci Total Environ 414:564–575CrossRefGoogle Scholar
  36. Wadsak M, Aastrup T, Odnevall Wallinder I, Leygraf C, Schreiner M (2002) Multianalytical in situ investigation of the initial atmospheric corrosion of bronze. Corros Sci 44:791–802CrossRefGoogle Scholar
  37. Wang X, Liu T, Bernard F, Ding X, Wen S, Zhang Y et al (2014) Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos Meas Tech 7:301–313CrossRefGoogle Scholar
  38. Watt J, Tidblad J, Kucera V, Hamilton R (2009). The effects of air pollution on Cultural Heritage. Springer (eds) p, 299Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Chabas
    • 1
    Email author
  • A. Fouqueau
    • 1
  • M. Attoui
    • 1
  • S. C. Alfaro
    • 1
  • A. Petitmangin
    • 1
  • A. Bouilloux
    • 1
  • M. Saheb
    • 1
  • A. Coman
    • 1
  • T. Lombardo
    • 1
  • N. Grand
    • 1
  • P. Zapf
    • 1
  • R. Berardo
    • 1
  • M. Duranton
    • 1
  • R. Durand-Jolibois
    • 1
  • M. Jerome
    • 1
  • E. Pangui
    • 1
  • J. J. Correia
    • 2
  • I. Guillot
    • 3
  • S. Nowak
    • 4
  1. 1.Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR7583Université Paris Est-Créteil-Université Paris Diderot-CNRSCréteilFrance
  2. 2.Laboratoire Atmosphères, Milieux, Observations SpatialesCNRS-Université de Versailles Saint-QuentinVersaillesFrance
  3. 3.Institut de Chimie et des Matériaux-CNRS-Université Paris EstThiaisFrance
  4. 4.Interface, Traitement Organisation et DYnamique des SystèmesUMR 7086 CNRS Université Paris DiderotParisFrance

Personalised recommendations