Environmental Science and Pollution Research

, Volume 22, Issue 23, pp 19077–19092 | Cite as

Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province, Iran

  • Behnam KeshavarziEmail author
  • Zeinab Mokhtarzadeh
  • Farid Moore
  • Meisam Rastegari Mehr
  • Ahmadreza Lahijanzadeh
  • Soqra Rostami
  • Helena Kaabi
Research Article


Karoon is the longest river in Iran and provides water for industries located along its banks, such as metal, petrochemical, and oil industries. It is also the source of drinking water for cities such as Ahwas, Abadan, and Khorramshahr. In this study, 34 and 18 surface sediment samples were collected and analyzed for heavy metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and polycyclic aromatic hydrocarbons (PAHs). The measured concentrations of heavy metals were compared with US EPA sediment quality guidelines, and the results showed that Cu concentration was above the threshold effect level (TEL) in 65.67 % of the samples and Hg concentration was above the effect range median (ERM) in some samples. The results revealed that Hg was severely enriched (5 < enrichment factor < 20) and classified in very high ecological risk index category. It is the major metallic contaminant in the study area. The total PAH concentrations ranged from 11.54–117,730 μg/kg, with the mean value of 7034.55 μg/kg dominated by lower molecular weight (LMW) PAHs. The total potentially carcinogenic PAHs (∑cPAHs) in sediment samples ranged from 2.09 to 31,930 μg/kg, indicating high carcinogenic potential of sediments in the study area. The total toxic equivalent (TEQ) values ranged from 1.06 to 7228.7 μg/kg. Maximum TEQ occurred in Abadan oil refinery station followed by Khorramshahr soap factory and Abadan petrochemical complex. Principal component analysis and cluster analysis also revealed the relationships between the studied parameters and identified their probable sources.


Heavy metals PAHs Sediment Karoon river 



The authors would like to acknowledge the help of the Khuzestan Environmental Protection Office and Shiraz University Medical Geology Research Centre for financial support. We would also like to extend our thanks to the Shiraz University research committee for logistic assistance.


  1. Abdel-Ghani NT, Elchaghaby GA (2007) Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int J Environ Sci Technol 4(4):451–456CrossRefGoogle Scholar
  2. Abernathy AR, Larson GL, Mathews RC Jr (1984) Heavy metals in the surficial sediments of Fontana Lake, North Carolina. Water Res 18(3):351–354CrossRefGoogle Scholar
  3. Agarwal A, Singh RD, Mishra SK, Bhunya PK (2005) ANN-based sediment yield models for Vamsadhara river basin (India). Water SA 31(1):95CrossRefGoogle Scholar
  4. Akcay H, Oguz A, Karapire C (2003) Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Res 37(4):813–822CrossRefGoogle Scholar
  5. Akpor OB, Ohiobor GO, Olaolu TD (2014) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2(4):37–43Google Scholar
  6. Al-Juboury AI (2009) Natural pollution by some heavy metals in the Tigris River, Northern Iraq. Int J Environ Res 3(2):189–198Google Scholar
  7. Barakat A, El Baghdadi M, Rais J, Nadem S (2012) Assessment of heavy metal in surface sediments of Day River at Beni-Mellal region, Morocco. Res J Environ Earth Sci 4:797–806Google Scholar
  8. Barra R, Quiroz R, Saez K, Araneda A, Urrutia R, Popp P (2009) Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south central Chile. Environ Chem Lett 7(2):133–139CrossRefGoogle Scholar
  9. Benlahcen KT, Chaoui A, Budzinski H, Bellocq J, Garrigues PH (1997) Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Mar Pollut Bull 34(5):298–305CrossRefGoogle Scholar
  10. Bhat SA, Pandit AK (2014) Surface water quality assessment of Wular Lake, a ramsar site in Kashmir Himalaya, using discriminant analysis and WQI. J Eco. doi: 10.1155/2014/724728 Google Scholar
  11. Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H (2007) Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci Total Environ 384(1):420–432CrossRefGoogle Scholar
  12. Bubb JM, Lester JN (1995) The effect of final sewage effluent discharges upon the behavior and fate of metals in a lowland river system. A question of dilution. Environ Technol 16(5):401–417CrossRefGoogle Scholar
  13. Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River sediments: chemometric and geochemical approach. Chemosphere 87(8):945–953CrossRefGoogle Scholar
  14. Colombo JC, Cappelletti N, Lasci J, Migoya MC, Speranza E, Skorupka CN (2006) Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Rio de la Plata Estuary, Argentina. Environ Sci Technol 40(3):734–740CrossRefGoogle Scholar
  15. Dassenakis M, Scoullos M, Foufa E, Krasakopoulou E, Pavlidou A, Kloukiniotou M (1998) Effects of multiple source pollution on a small Mediterranean river. Appl Geochem 13(2):197–211CrossRefGoogle Scholar
  16. Davutluoglu OI, Seckin G, Ersu CB, Yilmaz T, Sari B (2011) Heavy metal content and distribution in surface sediments of the Seyhan River, Turkey. J Environ Manag 92(9):2250–2259CrossRefGoogle Scholar
  17. Delistraty D (1997) Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons. Toxicol Environ Chem 64(1–4):81–108CrossRefGoogle Scholar
  18. Doong RA, Lin YT (2004) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res 38(7):1733–1744CrossRefGoogle Scholar
  19. Environmental Protection Agency (EPA) (2005) Predicting toxicity to amphipods from sediment chemistry. EPA/600/R–04/030, Washington DCGoogle Scholar
  20. Fernandes HM (1997) Heavy metal distribution in sediments and ecological risk assessment: the role of diagenetic processes in reducing metal toxicity in bottom sediments. Environ Pollut 97(3):317–325CrossRefGoogle Scholar
  21. Fu J, Ding YH, Li L, Sheng S, Wen T, Yu LJ, Chen W, An SQ, Zhu HL (2011) Polycyclic aromatic hydrocarbons and ecotoxicological characterization of sediments from the Huaihe River, China. J Environ Monit 13(3):597–604CrossRefGoogle Scholar
  22. Gaur VK, Gupta SK, Pandey SD, Gopal K, Misra V (2005) Distribution of heavy metals in sediment and water of River Gomti. Environ Monit Assess 102(1–3):419–433CrossRefGoogle Scholar
  23. Gee GW, Bauder JW (1986) Particle-size Analysis. Madison, particle-size analysis. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods, 2nd edn. Agronomy, 9. Soil Science Society of America, Madison, pp 383–411Google Scholar
  24. Guo JY, Wu FC, Zhang L, Liao HQ, Zhang RY, Li W, Mai BX (2011a) Screening level of PAHs in sediment core from Lake Hongfeng, Southwest China. Arch Environ Contam Toxicol 60(4):590–596CrossRefGoogle Scholar
  25. Guo W, He M, Yang Z, Lin C, Quan X (2011b) Aliphatic and polycyclic aromatic hydrocarbons in the Xihe River, an urban river in China’s Shenyang City: distribution and risk assessment. J Hazard Mater 186(2):1193–1199Google Scholar
  26. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001CrossRefGoogle Scholar
  27. Helfrich J, Armstrong DE (1986) Polycyclic aromatic hydrocarbons in sediments of the southern basin of Lake Michigan. J Great Lakes Res 12(3):192–199CrossRefGoogle Scholar
  28. Huu HH, Rudy S, Van Damme A (2010) Distribution and contamination status of heavy metals in estuarine sediments near Cau Ong harbor, Ha Long Bay, Vietnam. Geol Belg 13(1–2):37–47Google Scholar
  29. Isobe T, Takada H, Kanai M, Tsutsumi S, Isobe KO, Boonyatumanond R, Zakaria MP (2007) Distribution of polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals in South and Southeast Asian mussels. Environ Monit Assess 135(1–3):423–440CrossRefGoogle Scholar
  30. Jiang B, Zheng HL, Huang GQ, Hui D, Li XG, Suo HT, Rui LI (2007) Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin, China. J Environ Sci 19(3):306–311CrossRefGoogle Scholar
  31. Johnson AC, Larsen PF, Gadbois DF, Humason AW (1985) The distribution of polycyclic aromatic hydrocarbons in the surficial sediments of Penobscot Bay (Maine, USA) in relation to possible sources and to other sites worldwide. Mar Environ Res 15(1):1–16CrossRefGoogle Scholar
  32. Kaushik A, Kansal A, Kumari S, Kaushik CP (2009) Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. J Hazard Mater 164(1):265–270CrossRefGoogle Scholar
  33. Laxen DP, Harrison RM (1983) Physico-chemical speciation of selected metals in the treated effluent of a lead-acid battery manufacturer and in the receiving river. Water Res 17(1):71–80CrossRefGoogle Scholar
  34. Leite NF, Peralta-Zamora P, Grassi MT (2011) Distribution and origin of polycyclic aromatic hydrocarbons in surface sediments from an urban river basin at the Metropolitan Region of Curitiba, Brazil. J Environ Sci 23(6):904–911CrossRefGoogle Scholar
  35. Lentech (2011) Heavy metals. Lentech water treatment and Air purification Holding B.V (1998–2011) www.Lentech/heavymetal.htm
  36. Lienesch LA, Dumont JN, Bantle JA (2000) The effect of cadmium on oogenesis in Xenopus laevis. Chemosphere 41(10):1651–1658CrossRefGoogle Scholar
  37. Littlepage T (2013) Mercury in crude oils. MCA Spring Seminar SeriesGoogle Scholar
  38. Liu Y, Chen L, Huang QH, Li WY, Tang YJ, Zhao JF (2009) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci Total Environ 407(8):2931–2938CrossRefGoogle Scholar
  39. Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess 4(5):1019–1039CrossRefGoogle Scholar
  40. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97CrossRefGoogle Scholar
  41. Long ER, Field LJ, MacDonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17(4):714–727CrossRefGoogle Scholar
  42. Long ER, MacDonald DD, Severn CG, Hong CB (2000) Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ Toxicol Chem 19(10):2598–2601CrossRefGoogle Scholar
  43. Long ER, Ingersoll CG, MacDonald DD (2006) Calculation and uses of mean sediment quality guideline quotients: a critical review. Environ Sci Technol 40:1726–1736CrossRefGoogle Scholar
  44. Maioli OL, Rodrigues KC, Knoppers BA, Azevedo DA (2010) Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from two Brazilian estuarine systems. J Brazil Chem Soc 21(8):1543–1551CrossRefGoogle Scholar
  45. Malik A, Singh KP, Mohan D, Patel DK (2004) Distribution of polycyclic aromatic hydrocarbons in Gomti river system, India. Bull Environ Contam Toxicol 72(6):1211–1218CrossRefGoogle Scholar
  46. Mohiuddin KM, Ogawa Y, Zakir HM, Otomo K, Shikazono N (2011) Heavy metals contamination in water and sediments of an urban river in a developing country. Int J Environ Sci Technol 8(4):723–736CrossRefGoogle Scholar
  47. National Academy of Science (2002) Oil in the sea; input, fates and effects. National Academy Press, Washington, DCGoogle Scholar
  48. Nicolau R, Galera-Cunha A, Lucas Y (2006) Transfer of nutrients and labile metals from the continent to the sea by a small Mediterranean river. Chemosphere 63(3):469–476CrossRefGoogle Scholar
  49. Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharm 16(3):290–300CrossRefGoogle Scholar
  50. Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ Earth Sci 62(3):639–644CrossRefGoogle Scholar
  51. Olivares-Rieumont S, De la Rosa D, Lima L, Graham DW, Katia D, Borroto J, Martinez F, Sánchez J (2005) Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Res 39(16):3945–3953CrossRefGoogle Scholar
  52. Pampanin DM, Sydnes MO (2013) Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment. In: Kutcherov V (ed) Hydrocarbon. In Tech, pp 83Google Scholar
  53. Qiao M, Wang C, Huang S, Wang D, Wang Z (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32(1):28–33CrossRefGoogle Scholar
  54. Rastegari Mehr M (2012) Environmental geochemistry of heavy metals in water and sediments of a stretch of Zayanderood River (within 50 km of Isfahan city center). M.S. thesis in earth sciences. Shiraz University (in Farsi)Google Scholar
  55. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42(13):2895–2921CrossRefGoogle Scholar
  56. Rossman TG, Molina M, Meyer L, Boone P, Klein CB, Wang Z, Li F, Lin WC, Kinney PL (1991) Performance of 133 compounds in the lambda prophage induction endpoint of the Microscreen assay and a comparison with S. typhimurium mutagenicity and rodent carcinogenicity assays. Mut Res/Gen Toxicol 260(4):349–367CrossRefGoogle Scholar
  57. Ryan J, Estefan G, Rashid A (2007) Soil and plant analysis laboratory manual. ICARDAGoogle Scholar
  58. Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, Chiem NH, Tuyen BC, Prudente M, Boonyatumanond R, Sarkar SH, Bhattacharya B, Mishra P, Tana TS (2009) Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar Pollut Bull 58(2):189–200CrossRefGoogle Scholar
  59. Savinov VM, Savinova TN, Matishov GG, Dahle S, Næs K (2003) Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci Total Environ 306(1):39–56CrossRefGoogle Scholar
  60. Song Y, Ji J, Yang Z, Yuan X, Mao C, Frost RL, Ayoko GA (2011) Geochemical behavior assessment and apportionment of heavy metal contaminants in the bottom sediments of lower reach of Changjiang River. Catena 85(1):73–81CrossRefGoogle Scholar
  61. Sprovieri M, Feo ML, Prevedello L, Manta DS, Sammartino S, Tamburrino S, Marsella E (2007) Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour (southern Italy). Chemosphere 67(5):998–1009CrossRefGoogle Scholar
  62. Taylor KG, Owens PN (2009) Sediments in urban river basins: a review of sediment–contaminant dynamics in an environmental system conditioned by human activities. J Soils Sediments 9(4):281–303CrossRefGoogle Scholar
  63. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119CrossRefGoogle Scholar
  64. Ünlü S, Alpar B (2009) Evolution of potential ecological impacts of the bottom sediment from the Gulf of Gemlik; Marmara Sea, Turkey. Bull Environ Contam Toxicol 83(6):903–906CrossRefGoogle Scholar
  65. van Gestel CA, Jonker M, Kammenga JE, Laskowski R, Svendsen C (Ed) (2010) Mixture toxicity: linking approaches from ecological and human toxicology. CRC PressGoogle Scholar
  66. Wang Y, Yang Z, Shen Z, Tang Z, Niu J, Gao F (2011) Assessment of heavy metals in sediments from a typical catchment of the Yangtze River, China. Environ Monit Assess 172(1–4):407–417CrossRefGoogle Scholar
  67. Wong PK (1988) Mutagenicity of heavy metals. Bull Environ Contam Toxicol 40(4):597–603CrossRefGoogle Scholar
  68. World Health Organization (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. Environmental Health Criteria No 202: 88 ppGoogle Scholar
  69. Xu J, Yu Y, Wang P, Guo W, Dai S, Sun H (2007) Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere 67(7):1408–1414CrossRefGoogle Scholar
  70. Yang Z, Wang Y, Shen Z, Niu J, Tang Z (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166(2):1186–1194CrossRefGoogle Scholar
  71. Zakir HM, Shikazono N (2011) Environmental mobility and geochemical partitioning of Fe, Mn, Co, Ni and Mo in sediments of an urban river. J Environ Chem Ecotoxicol 3(5):116–126Google Scholar
  72. Zhang Z, Huang J, Yu G, Hong H (2004a) Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut 130(2):249–261CrossRefGoogle Scholar
  73. Zhang ZL, Hong HS, Zhou JL, Yu G (2004b) Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci Total Environ 323(1):71–86CrossRefGoogle Scholar
  74. Zhu Y, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yao L, Yang F, Lu Y, Wang W (2014) Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources. Sci Total Environ 466:357–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Behnam Keshavarzi
    • 1
    Email author
  • Zeinab Mokhtarzadeh
    • 1
  • Farid Moore
    • 1
  • Meisam Rastegari Mehr
    • 1
  • Ahmadreza Lahijanzadeh
    • 2
  • Soqra Rostami
    • 2
  • Helena Kaabi
    • 2
  1. 1.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran
  2. 2.Khuzestan Environmental Protection OfficeKhuzestanIran

Personalised recommendations