Environmental Science and Pollution Research

, Volume 23, Issue 15, pp 14718–14729 | Cite as

Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish

  • Róbert Kovács
  • Katalin Bakos
  • Béla Urbányi
  • Judit Kövesi
  • Gyöngyi Gazsi
  • Andrea Csepeli
  • Ádám János Appl
  • Dóra Bencsik
  • Zsolt Csenki
  • Ákos HorváthEmail author
Fate and effects of the residues of anticancer drugs in the environment


The acute and sub-chronic effects of four cytostatic drugs—5-fluorouracil (5-FU), cisplatin (CisPt), etoposide (ET) and imatinib mesylate (IM)—on zebrafish (Danio rerio) were investigated. Acute tests were carried out in a static system in accordance with the OECD guideline 203 for adult fish and the draft guideline for fish embryos (FET test) in order to find the LC50 values of the four cytostatic drugs. Early-life stage toxicity test on zebrafish was conducted according the OECD guideline 210 using the cytostatic drugs 5-FU and IM in a semistatic system with the objective of investigating the sub-chronic effects of the cytostatic drugs on fish. In adult fish, the cytostatic drugs 5-FU and ET did not pass the limit test, thus, are considered non-toxic. In case of cisplatin, LC50 was calculated at 64.5 mg L−1, whereas in case of IM, LC50 was at 70.8 mg L−1. In the FET test, LC50 of 5-FU at 72-h post fertilization (hpf) was 2441.6 mg L−1. In case of CisPt, LC50 was 349.9 mg L−1 at 48 hpf and it progressively decreased to 81.3 mg L−1 at 120 hpf. In addition, CisPt caused a significant delay in the hatch of larvae. In case of ET, LC50 values were not calculable as they were higher than 300 mg L−1 at which concentration the substance crystallized in the solution. LC50 values of IM were 48 hpf; 158.3 mg L−1 , 72 hpf; 141.6 mg L−1, 96 hpf; 118.0 mg L−1, and 120 hpf; 65.9 mg L−1. In the Early-life Stage Test with 5-FU, embryonic deformities were not detected during the tests. Regarding mortalities, the 10 mg L−1 concentration can be considered as LOEC, as statistically significant difference in mortalities was detected in this group alone. Concerning dry body weight and standard length, 1 mg L−1 is the LOEC. In case of IM, the highest tested concentration (10 mg L−1) can be considered LOEC for mortalities, however, the treatment did not have an effect on the other investigated parameters (dry and wet weight, standard length). All four cytostatic drugs were characterized by low toxicity in zebrafish in acute and sub-chronic tests.


Zebrafish Toxicity Cytostatic drugs Acute Sub-chronic 



The work was supported by the project number 265264 CytoThreat of the 7 th Framework Programme of the European Union and the project 9878/2015/FEKUT of the Ministry of Human Resources of Hungary awarded to Szent István University.


  1. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19 (9):2348–2356CrossRefGoogle Scholar
  2. Bantle J, Burton DT, Dawson DA, Dumont JN, Finch RA, Fort DJ (1994) FETAX interlaboratory validation study: Phase II testing. Environ Toxicol Chem 13:1628–1637CrossRefGoogle Scholar
  3. Beccari E, Modigliani P, Morpurgo G (1967) Induction of inter-and intragenic mitotic recombination by fluorodeoxyuridine and fluorouracil in Aspergillus nidulans. Genetics 56(1):7Google Scholar
  4. Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39 (1):73–86CrossRefGoogle Scholar
  5. Booker V, Halsall C, Llewellyn N, Johnson A, Williams R (2014) Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473:159–170CrossRefGoogle Scholar
  6. Brown JD, Dutta S, Bharti K, Bonner RF, Munson PJ, Dawid IB, Akhtar AL, Onojafe IF, Alur RP, Gross JM et al (2009) Expression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure. Proc Natl Acad Sci 106(5):1462–1467CrossRefGoogle Scholar
  7. Chu E (2007) Clinical colorectal cancer: ode to 5-fluorouracil. Clin Colorectal Cancer 6(9):609CrossRefGoogle Scholar
  8. Cleuvers M (2002a) Aquatische Ökotoxikologie ausgewählter Arzneimittel; Algentest und akuter Daphnientest. UWSF Z Umweltchem Ökotox 14:85–89CrossRefGoogle Scholar
  9. Cleuvers M (2002b) Aquatische Ökotoxikologie von Arzneimitteln. Presentation SETAC GLB Annual Meeting, Berlin, 2001. In: Ökotoxikologische Bewertung von Humanarzneimittelnin aquatischen Ökosystemen. Studien und Tagungsberichte, Landesumweltamt Brandenburg. Potsdam, GermanyGoogle Scholar
  10. Committee for Medicinal Products for Human Use (CHMP) (2013) Glivec, International non-proprietary name: IMATINIB. Assessment Report EMA/CHMP/161314/2013. European Medicines Agency, London, UKGoogle Scholar
  11. Dawson DA, Bantle JA (1987) Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay–Xenopus (FETAX). J Appl Toxicol 7(4):237–244CrossRefGoogle Scholar
  12. DeYoung D, Bantle J, Hull M, Burks S (1996) Differences in sensitivity to developmental toxicants as seen in Xenopus and Pimephales embryos. Bull Environ Contam Toxicol 56(1):143–150CrossRefGoogle Scholar
  13. Egeler P, Seck C (2009) 5-Fluorouracil: a study on the toxicity to early-life stages of Danio rerio (zebrafish). ECT 08AZ1FV:7Google Scholar
  14. Embry MR, Billiard S, Di Giulio R (2006) Lack of p53 induction in fish cells by model chemotherapeutics. Oncogene 25(14):2004–2010CrossRefGoogle Scholar
  15. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76 (2):122–159CrossRefGoogle Scholar
  16. Fick J, Lindberg RH, Tysklind M, Larsson D (2010) Predicted critical environmental concentrations for 500 pharmaceuticals. Regul Toxicol Pharmacol 58(3):516–523CrossRefGoogle Scholar
  17. Gaċić Z, Kolarević S, Sunjog K, Kraċun-Kolarević M, Paunović M, KneŻević-Vukċević J, Vuković-Gaċić B (2014) The impact of in vivo and in vitro exposure to base analogue 5-FU on the level of DNA damage in haemocytes of freshwater mussels Unio pictorum and Unio tumidus. Environ Pollut 191:145–150CrossRefGoogle Scholar
  18. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59(4):657–663Google Scholar
  19. Gröner J (1983) Biologische Abbaubarkeit und Toxizität von Fluorouracil und Natulan (für Roche Welwyn). Interne Mitteilung TSU/Nr. 52, 02/03/83, Roche, Basel (CH)Google Scholar
  20. Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environmental Toxicology and Chemistry 17 (3):377–382CrossRefGoogle Scholar
  21. Hernando MD, Mezcua M, Fernández-Alba A, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2):334–342CrossRefGoogle Scholar
  22. Hignite C, Aznaroff D (1977) Drugs and drugs metabolites as environmental contaminants: chlorophenoxyisobutirate and salicylic acid in sewage effluent. Life Sciences 20:337–341CrossRefGoogle Scholar
  23. Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences 86(1):6–19CrossRefGoogle Scholar
  24. Junker T, Seck C (2009) 5-Fluorouracil: a study on the toxicity to blue-green algae (Anabaena flos-aquae). Tech. Rep. 08AZ1AB, ECT Oekotoxikologie, Flörsheim/Main (DE) and Battelle UK, Ongar (UK)Google Scholar
  25. Kaiser KL, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Qual Res J Can 26(3):361–431Google Scholar
  26. Kim M, Choi J, Kim N, Han G (2014) Behavioral changes of zebrafish according to cisplatin-induced toxicity of the balance system. Hum Exp Toxicol:0960327114521046Google Scholar
  27. Kosjek T, Heath E (2011) Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC, Trends Anal Chem 30(7):1065–1087CrossRefGoogle Scholar
  28. Kosjek T, Dolinṡek T, Gramec D, Heath E, Strojan P, Serṡa G, ĊemaŻar M (2013a) Determination of vinblastine in tumour tissue with liquid chromatography–high resolution mass spectrometry. Talanta 116:887–893CrossRefGoogle Scholar
  29. Kosjek T, Perko S, żigon D, Heath E (2013b) Fluorouracil in the environment: analysis, occurrence, degradation and transformation. J Chromatogr A 1290:62–72CrossRefGoogle Scholar
  30. Kümmerer K, Al-Ahmad A, Bertram B, Wießler M (2000) Biodegradability of antineoplastic compounds in screening tests: influence of glucosidation and of stereochemistry. Chemosphere 40(7):767–773CrossRefGoogle Scholar
  31. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):D1091–7. doi: 10.1093/nar/gkt1068 CrossRefGoogle Scholar
  32. Lenz K, Mahnik S, Weissenbacher N, Mader R, Krenn P, Hann S, Koellensperger G, Uhl M, Knasmuller S, Ferk F et al (2007) Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater. Water Sci Technol 56(12):141–149CrossRefGoogle Scholar
  33. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338CrossRefGoogle Scholar
  34. Negreira N, López de Alda M, Barceló D (1280) On-line solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J Chromatogr A:64–74Google Scholar
  35. OECD (1992a) Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris, France, doi: 10.1787/9789264069961-en
  36. OECD (1992b) Test No. 210: Fish, Early-Life Stage Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris, France, doi: 10.1787/9789264070103-en
  37. OECD (2006) Fish Embryo Toxicity (FET) Test, OECD Guideline for the Testing of Chemicals, Draft Proposal for a New Guideline. OECD Publishing, ParisGoogle Scholar
  38. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1):46–53CrossRefGoogle Scholar
  39. Parrella A, Lavorgna M, Criscuolo E, Russo C, Fiumano V, Isidori M (2014) Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. ChemosphereGoogle Scholar
  40. Pichler C, Filipiċ M, Kundi M, Rainer B, Knasmueller S, Miṡík M (2014) Assessment of genotoxicity and acute toxic effect of the imatinib mesylate in plant bioassays. Chemosphere 115:54–58CrossRefGoogle Scholar
  41. Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8(1):82–95CrossRefGoogle Scholar
  42. Reddel RR, Kefford RF, Grant JM, Coates AS, Fox RM, Tattersall M (1982) Ototoxicity in patients receiving cisplatin: importance of dose and method of drug administration. Cancer Treat Rep 66(1):19–23Google Scholar
  43. Rosenberg B, Vancamp L (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefGoogle Scholar
  44. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment–applications beyond acute toxicity testing. Environ Sci Pollut Res 15(5):394–404CrossRefGoogle Scholar
  45. Straub JO (2010) Combined environmental risk assessment for 5-fluorouracil and capecitabine in Europe. Integr Environ Assess Manag 6(S1):540–566Google Scholar
  46. Yin J, Shao B, Zhang J, Li K (2010) A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China. Bull Environ Contam Toxicol 84(1):39–45CrossRefGoogle Scholar
  47. Zounková R, Odráṡka P, DoleŻalová L, Hilscherová K, Marṡálek B, Bláha L (2007) Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem 26(10):2208–2214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Róbert Kovács
    • 1
  • Katalin Bakos
    • 1
  • Béla Urbányi
    • 1
  • Judit Kövesi
    • 1
  • Gyöngyi Gazsi
    • 1
  • Andrea Csepeli
    • 1
  • Ádám János Appl
    • 1
  • Dóra Bencsik
    • 1
  • Zsolt Csenki
    • 1
  • Ákos Horváth
    • 1
    Email author
  1. 1.Department of AquacultureSzent István UniversityGödöllőHungary

Personalised recommendations