Skip to main content
Log in

Feasibility of using a translucid inorganic hydrogel to build a biosensor using immobilized algal cells

  • Crop protection and environmental health: legacy management and new concepts
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anthropic activities generate contaminants, as pesticides and other pollutants, in the aquatic environment which present a real threat to ecosystems and human health. Thus, monitoring tools become essential for water managers to detect these chemicals before the occurrence of adverse effects. In this aim, algal cell biosensors, based on photosystem II activity measurement, have been designed for several years in previous studies. In this work, we study a new immobilization technique of algal cells in the aim of improving the performance of these biosensors. Immobilization was here achieved by encapsulation in a hybrid alginate/silica translucid hydrogel. The feasibility of this process was here assessed, and the biosensor designed was tested on the detection of chemicals in urban rainwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalderink RH, Van Duin EHS, Peels CE, Scholten MJM (1990) Some characteristics of run-off quality from a separated sewer system in Leleystad, the Netherlands. Proceedings of the 5th International Conference on Urban Storm Drainage, Osaka, Japan, pp 427–432

    Google Scholar 

  • AFNOR (1980) Détermination de l’inhibition de croissance de Scenedesmus subspicatus par une substance. Norme experimentale NT90-304; Association Française de Normalisation, Paris, France

    Google Scholar 

  • Angerville R (2009) Evaluation des risques écotoxicologiques liés au déversement de Rejets Urbains par Temps de Pluie (RUTP) dans les cours d’eau: Application à une ville française et à une ville haïtienne. Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, 479 p

  • Armstrong JW, Thom RM, Chew KK (1980) Impact of a combined sewer overflow on the abundance, distribution and community structure of subtidal benthos. Mar Environ Res 4:3–23

    Article  Google Scholar 

  • Aryal R, Vigneswaran S, Kandasamy J, Naidu R (2010) Urban stormwater quality and treatment. Korean J Chem Eng 27:1343–1359

    Article  CAS  Google Scholar 

  • Aubertot JN (2005) Pesticides, agriculture et environment. Rapport, INRA et Cemagref, France, p 64

    Google Scholar 

  • Ban-Dar H, Yuh-Shein L, Yuh-Ren J (1989) A method for analysis of fluorescence curve from DCMU-poisoned chloroplasts. Biochim Biophys Acta Bioenerg 975:44–49

    Article  Google Scholar 

  • Bertrand-Krajewski JL, Becouze C, Dembélé A, Coquery M, Cren-Olivé C, Barillon B, Dauthuille P, Chapgier J, Grenier-Loustalot MF, Marin P (2008) Priority pollutants in stormwater: the ESPRIT project. Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 augt-5 sept 2008

  • Chouteau C, Dzyadevych S, Chovelon JM, Durrieu C (2004) Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19(9):1089–1096

    Article  CAS  Google Scholar 

  • Chouteau C, Dzyadevych S, Durrieu C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water sample. Biosens Bioelectron 21(2):273–281

    Article  CAS  Google Scholar 

  • Ciucu A, Lupu A, Pirvutoi S, Palleschi G (2001) Biosensors for heavy metals determination based on enzyme inhibition. Chem Mater Sci 63:33–44

    CAS  Google Scholar 

  • Directive 2009/128/CE, Règlement (CE) n°1107/2009, Directive 2009/127/CE et Règlement (CE n°1185/2009)

  • Draber W, Tietjen K, Kluth JF, Trebst A (1991) Herbicides in photosynthesis research. Angew Chem Int Ed Engl 30:1621–1633

    Article  Google Scholar 

  • Dubois A, Lacouture L (2011) Rapport du commissariat général du développement durable, MEDDTL

  • Dzyadevych SV, Soldatkin AP, Korpan YI, Arkhypova VN, EL’skaya AV, Chovelon JM, Martelet C, Jaffrezic-Renault N (2003) Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal BioanalChem 377:496–506

    Article  CAS  Google Scholar 

  • Fai PB, Grant A, Reid B (2007) Chlorophyll-a fluorescence as a biomarker for rapid toxicity assessment. Environ Toxicol Chem 26(7):1520–1531

    Article  CAS  Google Scholar 

  • Ferro Y, Perulloni M, Jobbagy M, Bilmes SA, Durrieu C (2012) Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogel. Sensors 12:16879–16891

    Article  CAS  Google Scholar 

  • Giardi MT, Koblizek M, Masojidek J (2001) Photosystem II based biosensors for the detection of pollutants. Biosens Bioelectron 16:1027–1033

    Article  CAS  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  Google Scholar 

  • Moreland DE (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol 31:597–638

    Article  CAS  Google Scholar 

  • Perullini M, Jobbágy M, Soler-Illia GJAA, Bilmes SA (2005) Cell growth at cavities created inside silica monoliths synthesized by sol-gel. Chem Mater 78:3806–3808

    Article  Google Scholar 

  • Perullini M, Rivero MM, Jobbágy M, Mentaberry A, Bilmes SA (2007) Plant cell proliferation inside an inorganic host. J Biotechnol 127:542–548

    Article  CAS  Google Scholar 

  • Samson G, Popovic R (1988) Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants. Ecotoxicol Environ Saf 16:272–278

    Article  CAS  Google Scholar 

  • Sicard C, Perullini M, Spedalieri C, Coradin T, Brayner R, Livage J, Jobbagy M, Bilmes SA (2011) CeO2 nanoparticles for the protection of photosynthetic organisms immobilized in silica gels. Chem Mater 23:1374–1378

    Article  CAS  Google Scholar 

  • Tran-Minh C (1993) Biosensors. Chapman & Hall, London

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by ECOS SUD (University of Paris 13), MINCYT (Argentina), L’Office national de l’eau et des milieux aquatiques (France), and CONICET (GI-PIP 11220110101020, UBACyT 20020130100048BA, ANPCyT-PICT 2012-1167 and 2013-2045) from Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Durrieu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durrieu, C., Ferro, Y., Perullini, M. et al. Feasibility of using a translucid inorganic hydrogel to build a biosensor using immobilized algal cells. Environ Sci Pollut Res 23, 9–13 (2016). https://doi.org/10.1007/s11356-015-5023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5023-4

Keywords

Navigation