Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 22, pp 18185–18196 | Cite as

Photocatalytic abatement results from a model street canyon

  • M. Gallus
  • R. Ciuraru
  • F. Mothes
  • V. Akylas
  • F. Barmpas
  • A. Beeldens
  • F. Bernard
  • E. Boonen
  • A. Boréave
  • M. Cazaunau
  • N. Charbonnel
  • H. Chen
  • V. Daële
  • Y. Dupart
  • C. Gaimoz
  • B. Grosselin
  • H. Herrmann
  • S. Ifang
  • R. Kurtenbach
  • M. Maille
  • I. Marjanovic
  • V. Michoud
  • A. Mellouki
  • K. Miet
  • N. Moussiopoulos
  • L. Poulain
  • P. Zapf
  • C. George
  • J. F. Doussin
  • J. KleffmannEmail author
Research Article

Abstract

During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOx), ozone (O3), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOx, O3, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOx remediation of ≤2 % was derived. This result is consistent only with three recent field studies on photocatalytic NOx remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions.

Keywords

Air pollution Photocatalysis TiO2 Outdoor application Street canyon 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the European Commission through the Life+ grant LIFE 08 ENV/F/000487 PHOTOPAQ. The authors also want to thank Mr. Daniele Salvi for his technical help during the campaigns at the Petosino site.

References

  1. Auvinen J, Wirtanen L (2008) The influence of photocatalytic interior paints on indoor Air quality. Atmos Environ 42:4101–4112CrossRefGoogle Scholar
  2. Ballari MM, Brouwers HJH (2013) Full scale demonstration of air-purifying pavement. J Hazard Mat 254–255:406–414CrossRefGoogle Scholar
  3. Beaumont SK, Gustafsson RJ, Lambert RM (2009) Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces. Chem Phys Chem 10:331–333Google Scholar
  4. Beekmann M, Vautard R (2010) A modelling study of photochemical regimes over Europe: robustness and variability. Atmos Chem Phys 10:10067–10084CrossRefGoogle Scholar
  5. Birmili W, Stratmann F, Wiedensohler A (1999) Design of a DMA-based size spectrometer for a large particle size range and stable operation. J Aerosol Sci 30:549–553CrossRefGoogle Scholar
  6. Bolte G, Flassak T (2012) Numerische Simulation der Wirksamkeit photokatalytisch aktiver Betonoberflächen. In: Internationale Baustofftagung 18. ibausil (proceedings), Weimar, Germany, 1:548-558Google Scholar
  7. Boonen E, Akylas V, Barmpas F, Boréave A, Bottalico L, Cazaunau M, Chen H, Daële V, De Marco T, Doussin JF, Gaimoz C, Gallus M, George C, Grand N, Grosselin B, Guerrini GL, Herrmann H, Ifang S, Kleffmann J, Kurtenbach R, Maille M, Manganelli G, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Beeldens A (2015) Construction of a photocatalytic De-polluting field site in the Leopold II tunnel in Brussels. J Environ Manag 155:136–144Google Scholar
  8. Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spec Rev 26:185–222CrossRefGoogle Scholar
  9. Carslaw DC, Beevers SD, Bell MC (2007) Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmos Environ 41:2073–2082CrossRefGoogle Scholar
  10. Carslaw DC, Beevers SD, Tate JE, Westmoreland EJ, Williams ML (2011) Recent evidence concerning higher NOx emissions from passenger cars and light duty vehicles. Atmos Environ 45:7053–7063CrossRefGoogle Scholar
  11. Carslaw DC, Rhys-Tyler GR (2013) New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmos Environ 81:339–347CrossRefGoogle Scholar
  12. Chang KL, Sekiguchi K, Wang QY, Zhao F (2013) Removal of ethylene and secondary organic aerosols using UV-C254 + 185 nm with TiO2 catalyst. Aerosol Air Qual Res 13:618–626Google Scholar
  13. Chen J, Poon C-S (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906CrossRefGoogle Scholar
  14. Chen J, Kou S, Poon C (2011) Photocatalytic cement-based materials: comparison of nitrogen oxides and toluene removal potentials and evalutation of self-cleaning. Build Environ 46:1827–1833CrossRefGoogle Scholar
  15. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948CrossRefGoogle Scholar
  16. Costa A, Chiarello GL, Selli E, Guarino M (2012) Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. J Environ Manag 96:86–90CrossRefGoogle Scholar
  17. De Richter R, Caillol S (2011) Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J Photochem Photobiol C Photochem Rev 12:1–19CrossRefGoogle Scholar
  18. EEA (3/2014) Air pollution by ozone across Europe during summer 2013: Overview of exceedances of EC ozone threshold values: April–September 2013, ISSN 1725-2237Google Scholar
  19. EEA (5/2014) Air quality in Europe — 2014 report, ISSN 1725-9177Google Scholar
  20. Finlayson-Pitts BJ, Pitts Jr. JN (2000) Chemistry of the upper and lower atmosphere. Academic PressGoogle Scholar
  21. Flassak T (2012) Numerical simulation of the depollution effectiveness of photocatalytic coverings in street canyons. In: Photocatalysis: science and application for urban Air quality. The LIFE+ PhotoPaq conference, Corse, FranceGoogle Scholar
  22. Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boréave A, Cazaunau M, Chen H, Daële V, Doussin JF, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J (2015) Photocatalytic nitrogen oxides abatement results from the Leopold II tunnel in Brussels. Build Environ 84:125–133Google Scholar
  23. Geiss O, Cacho C, Barrero-Moreno J, Kotzias D (2012) Photocatalytic degradation of organic paint constituents – formation of carbonyls. Build Environ 48:107–112CrossRefGoogle Scholar
  24. Guerrini GL, Peccati E (2007) Photocatalytic cementitious roads for depollution. International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, pp 179–186Google Scholar
  25. Gustafsson RJ, Orlov A, Griffiths PT, Cox RA, Lambert RM (2006) Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chem Commun 3936–3938Google Scholar
  26. Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J (2014) Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmos Environ 91:154–161CrossRefGoogle Scholar
  27. IPL (2010) Dutch Air Quality Innovation Programme concluded: Improved Air Quality with Coating of Titanium Dioxide not Demonstrated. http://laqm.defra.gov.uk/documents/Dutch_Air_Quality_Innovation_Programme.pdf. Accessed 11 May 2015
  28. Jacobi S (2012) NO2-Reduzierung durch photocatalytisch wirksame Oberflächen? Modellversuch Fulda. Hessisches Landesamt für Umwelt und Geologie. http://www.hlug.de/fileadmin/dokumente/das_hlug/jahresbericht/2012/jb2012_059-066_I2_Jacobi_final.pdf. Accessed 11 May 2015
  29. Kurtenbach R, Kleffmann J, Niedojadlo A, Wiesen P (2012) Primary NO2 emissions and their impact on air quality in traffic environments in Europe. Environ Sci Eur 24:1–8CrossRefGoogle Scholar
  30. LANUV (2009) Landesamt für Natur, Umwelt und Verbraucherschutz in Nordrhein-Westfalen. Auswirkung der Umweltzone Köln auf die Luftqualität – Auswertung der Messdaten. http://www.lanuv.nrw.de/luft/pdf/Umweltzone_Koeln_20090625.pdf. Accessed 11 May 2015
  31. Laufs S, Burgeth G, Duttlinger W, Kurtenbach R, Maban M, Thomas C, Wiesen P, Kleffmann J (2010) Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmos Environ 44:2341–2349CrossRefGoogle Scholar
  32. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241CrossRefGoogle Scholar
  33. Maggos T, Plassais A, Bartzis JG, Vasilakos C, Moussiopoulos N, Bonafous L (2008) Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ Monit Assess 136:35–44CrossRefGoogle Scholar
  34. Melkonyan A, Kuttler W (2012) Long-term analysis of NO, NO2 and O3 in North Rhine-Westphalia, Germany. Atmos Environ 60:316–326CrossRefGoogle Scholar
  35. Monge ME, D’Anna B, George C (2010a) Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces – an air quality remediation process? Phys Chem Chem Phys 12:8991–8998CrossRefGoogle Scholar
  36. Monge ME, George C, D’Anna B, Doussin J-F, Jammoul A, Wang J, Eyglunent G, Solignac G, Daële V, Melluki A (2010b) Ozone formation from illuminated titanium dioxide surfaces. J Am Chem Soc 132:8234–8235CrossRefGoogle Scholar
  37. Ndour M, D’Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M (2008) Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophys Res Lett 35, L05812Google Scholar
  38. Ohama Y, Van Gemert D (2011) Application of titanium dioxide photocatalysis to construction materials. State-of-the-Art Report of the RILEM Technical Committee 194-TDP, Springer, XII; p 48Google Scholar
  39. Panteliadis P, Strak M, Hoek G, Weijers E, van der Zee S, Dijkema M (2014) Implementation of a low emission zone and evaluation of effects on air quality by long-term monitoring, UK. Atmos Environ 86:113–119CrossRefGoogle Scholar
  40. PhotoPAQ (2014) European Life+ project PhotoPAQ. http://photopaq.ircelyon.univ-lyon1.fr/. Accessed 11 May 2015
  41. PICADA (2006) European PICADA Project, GROWTH Project GRD1-2001-40449. http://www.picada-project.com/domino/SitePicada/Picada.nsf?OpenDataBase. Accessed 11 May 2015
  42. Pichat P, Disdier J, Hoang-Van C, Mas D, Goutailler G, Gaysse C (2000) Purification/ deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today 63:363–369CrossRefGoogle Scholar
  43. Pitts JN Jr (1983) Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres. Environ Health Perspect 47:115–140CrossRefGoogle Scholar
  44. Salthammer T, Fuhrmann F (2007) Photocatalytic surface reactions on indoor paint. Environ Sci Technol 41:6573–6578CrossRefGoogle Scholar
  45. Scheinhardt S, Spindler G, Leise S, Müller K, Iinuma Y, Zimmermann F, Matschullat J, Herrmann H (2013) Comprehensive chemical characterisation of size-segregated PM10 in Dresden and estimation of changes due to global warming. Atmos Environ 75:365–373CrossRefGoogle Scholar
  46. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  47. Strini A, Cassese S, Schiavi L (2005) Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Appl Catal B Environ 61:90–97CrossRefGoogle Scholar
  48. Tera (2009) In situ study of the air pollution mitigating properties of photocatalytic coating, Tera Environement, (Contract number 0941C0978), Report for ADEME and Rhone-Alpe region, France. http://www.air-rhonealpes.fr/site/media/telecharger/651413. Accessed 11 May 2015
  49. VDI (2006) 3782, Part 5, Environmental Meteorology, Atmospheric Dispersion Models, Deposition Parameters. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1bGoogle Scholar
  50. Velders GJM, Geilenkirchen GP, de Lange R (2011) Higher than expected NOx emission from trucks may affect attainability of NO2 limit values in the Netherlands. Atmos Environ 45:3025–3033CrossRefGoogle Scholar
  51. Villena G, Bejan I, Kurtenbach R, Wiesen P, Kleffmann J (2012) Interferences of commercial NO2 instruments in the urban atmosphere and in a smog-chamber. Atmos Meas Tech 5:149–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Gallus
    • 1
  • R. Ciuraru
    • 2
    • 8
    • 9
  • F. Mothes
    • 3
  • V. Akylas
    • 4
  • F. Barmpas
    • 4
  • A. Beeldens
    • 5
  • F. Bernard
    • 2
  • E. Boonen
    • 5
  • A. Boréave
    • 2
  • M. Cazaunau
    • 6
  • N. Charbonnel
    • 2
  • H. Chen
    • 6
  • V. Daële
    • 6
  • Y. Dupart
    • 2
  • C. Gaimoz
    • 7
  • B. Grosselin
    • 6
  • H. Herrmann
    • 3
  • S. Ifang
    • 1
  • R. Kurtenbach
    • 1
  • M. Maille
    • 7
  • I. Marjanovic
    • 7
  • V. Michoud
    • 7
  • A. Mellouki
    • 6
  • K. Miet
    • 7
  • N. Moussiopoulos
    • 4
  • L. Poulain
    • 3
  • P. Zapf
    • 7
  • C. George
    • 2
  • J. F. Doussin
    • 7
  • J. Kleffmann
    • 1
    Email author
  1. 1.Physikalische und Theoretische Chemie/FB CBergische Universität Wuppertal (BUW)WuppertalGermany
  2. 2.Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l’environnement de LyonVilleurbanneFrance
  3. 3.Leibniz-Institut für Troposphärenforschung e.V. (TROPOS)Atmospheric Chemistry DepartmentLeipzigGermany
  4. 4.Laboratory of Heat Transfer and Environmental Engineering (LHTEE)Aristotle University of ThessalonikiThessalonikiGreece
  5. 5.Belgian Road Research Centre (BRRC)BrusselsBelgium
  6. 6.Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUCOrléansFrance
  7. 7.LISA, UMR CNRS 7583Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon LaplaceCréteilFrance
  8. 8.University of Bordeaux, EPOC UMR 5805Talence cedexFrance
  9. 9.CNRS, EPOC UMR 5805Talence cedexFrance

Personalised recommendations