Environmental Science and Pollution Research

, Volume 22, Issue 21, pp 16830–16842 | Cite as

A reactive transport model for mercury fate in contaminated soil—sensitivity analysis

  • Bertrand LetermeEmail author
  • Diederik Jacques
Research Article


We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.


Mercury Hg Sensitivity analysis Morris Vadose zone Reactive transport modelling HP1 



The present study is part of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. This particular work was done with the financial support of the Public Waste Agency of Flanders (OVAM).

Supplementary material

11356_2015_4876_MOESM1_ESM.docx (27 kb)
ONLINE RESOURCE 1 Tables of elementary effect statistics μ (arithmetic mean), μ* (mean of the absolute values) and σ (standard deviation) for the sensitivity analysis. The three Tables correspond to the three simulation groups: (a) cinnabar, (b) Hg NAPL and (c) HgCl2(aq) as the initial contamination. (DOCX 27 kb)


  1. Bernaus A, Gaona X, van Ree D, Valiente M (2006) Determination of mercury in polluted soils surrounding a chlor-alkali plant: Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565(1):73–80CrossRefGoogle Scholar
  2. Bessinger BA, Marks CD (2010) Treatment of mercury-contaminated soils with activated carbon: A laboratory, field, and modeling study. Remediat J 21(1):115–135. doi: 10.1002/rem.20275 CrossRefGoogle Scholar
  3. Biester H, Gosar M, Müller G (1999) Mercury speciation in tailings of the Idrija mercury mine. J Geochem Explor 65(3):195–204CrossRefGoogle Scholar
  4. Blanc P, Lassin A, Piantone P (2012) THERMODDEM a database devoted to waste minerals. BRGM, Orléans, France.
  5. Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479(2):233–248CrossRefGoogle Scholar
  6. Bollen A, Wenke A, Biester H (2008) Mercury speciation analyses in HgCl2-contaminated soils and groundwater-Implications for risk assessment and remediation strategies. Water Res 42(1-2):91–100CrossRefGoogle Scholar
  7. Braakhekke MC, Beer C, Hoosbeek MR, Reichstein M, Kruijt B, Schrumpf M, Kabat P (2011) SOMPROF: A vertically explicit soil organic matter model. Ecol Model 222(10):1712–1730. doi: 10.1016/j.ecolmodel.2011.02.015 CrossRefGoogle Scholar
  8. Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22(10):1509–1518CrossRefGoogle Scholar
  9. Davis A, Bloom NS, Que Hee SS (1997) The Environmental Geochemistry and Bioaccessibility of Mercury in Soils and Sediments: A Review. Risk Anal 17(5):557–569. doi: 10.1111/j.1539-6924.1997.tb00897.x CrossRefGoogle Scholar
  10. Don A, Schulze E-D (2008) Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry 91(2):117–131. doi: 10.1007/s10533-008-9263-y CrossRefGoogle Scholar
  11. Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J 103(0):1–14. doi: 10.1016/j.microc.2012.02.001 CrossRefGoogle Scholar
  12. Gustafsson JP (1999) WinHumicV For Win95/98/NT. Retrieved from
  13. Jacques D, Šimůnek J, Mallants D, Van Genuchten MT (2006) Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J Contam Hydrol 88:197–218CrossRefGoogle Scholar
  14. Jacques D, Šimůnek J, Mallants D, van Genuchten MT (2008a) Modeling Coupled Hydrologic and Chemical Processes: Long-Term Uranium Transport following Phosphorus Fertilization. Vadose Zone J 7(2):698–711. doi: 10.2136/vzj2007.0084 CrossRefGoogle Scholar
  15. Jacques D, Šimůnek J, Mallants D, Van Genuchten MT (2008b) Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3-4):449–461CrossRefGoogle Scholar
  16. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304CrossRefGoogle Scholar
  17. Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res. doi: 10.1016/j.envres.2012.12.011i Google Scholar
  18. Kothawala DN, Moore TR, Hendershot WH (2008) Adsorption of dissolved organic carbon to mineral soils: A comparison of four isotherm approaches. Geoderma 148(1):43–50CrossRefGoogle Scholar
  19. Leopold K, Foulkes M, Worsfold P (2010) Methods for the determination and speciation of mercury in natural waters—A review. Anal Chim Acta 663(2):127–138. doi: 10.1016/j.aca.2010.01.048 CrossRefGoogle Scholar
  20. Leterme B, Blanc P, Jacques D (2014) A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environ Sci Pollut Res 21:12279–12293. doi: 10.1007/s11356-014-3135-x CrossRefGoogle Scholar
  21. Liu G, Cai Y, O’Driscoll N, Feng X, Jiang G (2012) Overview of mercury in the environment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1–12. doi: 10.1002/9781118146644.ch1 Google Scholar
  22. Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monit 13(12):3460–3468. doi: 10.1039/C1EM10694E CrossRefGoogle Scholar
  23. Morris MD (1991) Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 33(2):161–174CrossRefGoogle Scholar
  24. Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49(8):1089–1101. doi: 10.1007/s00254-005-0152-6 CrossRefGoogle Scholar
  25. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4(1):29–48. doi: 10.1007/s100210000058 CrossRefGoogle Scholar
  26. Ota M, Nagai H, Koarashi J (2013) Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach. J Geophys Res Biogeosci 118(4):1646–1659. doi: 10.1002/2013JG002379 CrossRefGoogle Scholar
  27. Pirrone N, Cinnirella S, Feng X, Finkelman R, Friedli H, Leaner J, Mason R, Mukherjee A, Stracher G, Streets D (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964CrossRefGoogle Scholar
  28. Ravichandran M (2004) Interactions between mercury and dissolved organic matter: a review. Chemosphere 55(3):319–331CrossRefGoogle Scholar
  29. Reddy MM, Aiken GR (2001) Fulvic Acid-Sulfide Ion Competition for Mercury Ion Binding in the Florida Everglades. Water Air Soil Pollut 132(1):89–104. doi: 10.1023/a:1012073503678 CrossRefGoogle Scholar
  30. Rinklebe J, During A, Overesch M, Du Laing G, Wennrich R, Stärk H-J, Mothes S (2010) Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ Pollut 158(1):308–318CrossRefGoogle Scholar
  31. Santoro A, Terzano R, Blo G, Fiore S, Mangold S, Ruggiero P (2010) Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy. J Synchrotron Radiat 17(2):187–192. doi: 10.1107/S0909049510002001 CrossRefGoogle Scholar
  32. Scholtz MT, Van Heyst BJ, Schroeder WH (2003) Modelling of mercury emissions from background soils. Sci Total Environ 304(1-3):185–207CrossRefGoogle Scholar
  33. Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interf Sci 119(2-3):71–96CrossRefGoogle Scholar
  34. Seuntjens P, Mallants D, Šimůnek J, Patyn J, Jacques D (2002) Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile. J Hydrol 264(1):185–200CrossRefGoogle Scholar
  35. Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. J Geophys Res 113:G00C03. doi: 10.1029/2008jg000745 Google Scholar
  36. Skyllberg U (2010) Mercury biogeochemistry in soils and sediments. Dev Soil Sci 34:379–410Google Scholar
  37. Skyllberg U (2012) Chemical speciation of mercury in soil and sediment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 219–258. doi: 10.1002/9781118146644.ch7
  38. Slowey AJ, Rytuba JJ, Brown GE (2005) Speciation of Mercury and Mode of Transport from Placer Gold Mine Tailings. Environ Sci Technol 39(6):1547–1554. doi: 10.1021/es049113z CrossRefGoogle Scholar
  39. Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Šimůnek J, Spycher N, Yabusaki SB, Yeh GT (2014) Reactive transport codes for subsurface environmental simulation. Comput Geosci, pp 1–34. doi: 10.1007/s10596-014-9443-x
  40. Stolk AP (2001) Landelijk Meetnet Regenwatersamenstelling - Meetresultaten 1999. Dutch National Precipitation Chemistry Network. Monitoring results for 1999. Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven, the Netherlands, p 61.Google Scholar
  41. Terzano R, Santoro A, Spagnuolo M, Vekemans B, Medici L, Janssens K, Göttlicher J, Denecke MA, Mangold S, Ruggiero P (2010) Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ Pollut 158(8):2702–2709CrossRefGoogle Scholar
  42. Tipping E, Wadsworth RA, Norris DA, Hall JR, Ilyin I (2011) Long-term mercury dynamics in UK soils. Environ Pollut 159(12):3474–3483CrossRefGoogle Scholar
  43. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  44. Waples JS, Nagy KL, Aiken GR, Ryan JN (2005) Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim Cosmochim Acta 69(6):1575–1588CrossRefGoogle Scholar
  45. Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74(0):42–53. doi: 10.1016/j.envint.2014.09.007 CrossRefGoogle Scholar
  46. Zhu J, Sykes JF (2004) Simple screening models of NAPL dissolution in the subsurface. J Contam Hydrol 72(1-4):245–258CrossRefGoogle Scholar
  47. Zhu Y, Ma LQ, Gao B, Bonzongo JC, Harris W, Gu B (2012) Transport and interactions of kaolinite and mercury in saturated sand media. J Hazard Mater 213-214:93–99. doi: 10.1016/j.jhazmat.2012.01.061 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Performance Assessments, Institute for Environment, Health and SafetyBelgian Nuclear Research Centre (SCK•CEN)MolBelgium

Personalised recommendations