Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 20, pp 16077–16097 | Cite as

Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique

  • Lambe Barandovski
  • Marina V. Frontasyeva
  • Trajče StafilovEmail author
  • Robert Šajn
  • Tatyana M. Ostrovnaya
Research Article

Abstract

Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.

Keywords

Moss Biomonitoring Air pollution Macedonia Air pollution Neutron activation analysis Atomic absorption spectrometry Atomic emission spectrometry with inductively coupled plasma 

Notes

Acknowledgments

The authors thank Prof. M. Cekova from the Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Skopje, for the identification of moss species.

References

  1. Alijagić J, Šajn R (2011) Distribution of chemical elements in an old metallurgical area, Zenica (Bosnia and Herzegovina). Geoderma 162:71–85CrossRefGoogle Scholar
  2. Angelovska S, Stafilov T, Šajn R, Bačeva K, Balabanova B (2014) Moss biomonitoring of air pollution with heavy metals in the vicinity of Pb-Zn mine “Toranica” near the town of Kriva Palanka. Mod Chem Appl 2:123–129. doi: 10.4172/2329-6798.1000123 CrossRefGoogle Scholar
  3. Bačeva K, Stafilov T, Šajn R, Tănăselia C, Popov SI (2011) Distribution of chemical elements in attic dust in the vicinity of ferronickel smelter plant. Fresenius Environ Bull 20(9):2306–2314Google Scholar
  4. Bačeva K, , Šajn R, Tănăselia C (2012) Moss biomonitoring of air pollution with heavy metals in the vicinity of a ferronickel smelter plant. J Environ Sci Health A 47:1–13Google Scholar
  5. Balabanova B, Stafilov T, Bačeva K, Šajn R (2010) Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radoviš, Republic of Macedonia. J Environ Sci Health A 45:1504–1518Google Scholar
  6. Balabanova B, Stafilov T, Šajn R, Bačeva K (2011) Distribution of chemical elements in attic dust as reflection of lithology and anthropogenic influence in the vicinity of copper mine and flotation. Arch Environ Contam Toxicol 6:173–184CrossRefGoogle Scholar
  7. Balabanova B, Stafilov T, Šajn R, Bačeva K (2012) Characterisation of heavy metals in lichen species Hypogymnia physodes and Evernia prunastri due to biomonitoring of air pollution in the vicinity of copper mine. Int J Environ Res 6(3):779–792Google Scholar
  8. Balabanova B, Stafilov T, Šajn R, Bačeva K (2015) Quantitative assessment of metal elements using moss species as biomonitors in downwind area of one lead-zinc mine. J Environ Sci 26(7), (in press). doi: 10.1016/S1001-0742(13)60561-6
  9. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V (2006) Air pollution studies in Macedonia using the moss biomonitoring technique, NAA, AAS and GIS technology. Preprint E18–2006–160, Joint Institute for Nuclear Research, DubnaGoogle Scholar
  10. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118CrossRefGoogle Scholar
  11. Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Pavlov S, Enimiteva V (2012) Trends of atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique. J Environ Sci Health A 47(13):2000–2015CrossRefGoogle Scholar
  12. Barandovski L, Stafilov T, Šajn R, Frontasyeva MV, Bačeva K (2013) Air pollution study in Macedonia using a moss biomonitoring technique, ICP-AES and AAS. Maced J Chem Chem Eng 32(1):89–107Google Scholar
  13. Bargagli R, Brown DH, Nelli L (1995) Biomonitoring with moss: procedures for correcting for soil contamination. Environ Pollut 89:169–175CrossRefGoogle Scholar
  14. Beelen R, Hoek G, Pebesma E, Vienneaud D, de Hoogh K, Briggs DJ (2009) Mapping of background air pollution at a fine spatial scale across the European Union. Sci Total Environ 407:1852–1867CrossRefGoogle Scholar
  15. Berg T, Steinnes E (1997) Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute values. Environ Pollut 98:61–71CrossRefGoogle Scholar
  16. Berg T, Røyset O, Steinnes E (1995a) Atmospheric trace element deposition: principal component analysis of ICP-MS data from moss samples. Environ Pollut 88:67–77CrossRefGoogle Scholar
  17. Berg T, Røyset O, Steinnes E (1995b) Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos Environ 29:353–360CrossRefGoogle Scholar
  18. Blouet BW (2008) The EU and neighbors—geography of Europe in modern world. John Wiley & Sons, New YorkGoogle Scholar
  19. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26(2):211–252Google Scholar
  20. Buse A, Norris D, Harmens H, Buker P, Ashenden T, Mills G (2003) European Atlas: heavy metals in European mosses: 2000/2001 Survey. UNECE ICP vegetation. Centre for Ecology & Hydrology. University of Wales, BangorGoogle Scholar
  21. Čeburnis D, Steinnes E, Kveitkus K (1999) Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere 38:445–455CrossRefGoogle Scholar
  22. Cekova M (2005) Review of the bryoflora of the Republic of Macedonia. Ss. Cyril and Methodius University, Skopje (in Macedonian)Google Scholar
  23. Coskun M, Frontasyeva MV, Steinnes E, Cotuk AY, Pavlov SS, Coskun M, Sazonov AS, Cayir A, Belivermis M (2005) Atmospheric deposition of heavy metals in Thrace studied by analysis of moss (Hypnum cupressiforme). Bull Environ Contam Toxicol 74:201–209. doi: 10.1007/s00128-004-0569-8 CrossRefGoogle Scholar
  24. Culicov OA, Mocanu R, Frontasyeva MV, Yurukova L, Steinnes E (2005) Active moss biomonitoring applied to an industrial site in Romania: relative accumulation of 36 elements in moss-bags. Environ Monit Assess 108:229–240Google Scholar
  25. Davis JC (1986) Statistic and data analysis in geology. Willey & Sons, New YorkGoogle Scholar
  26. Dimovska B, Šajn R, Stafilov T, Bačeva K, Tǎnǎselia C (2014) Determination of atmospheric pollution around the thermoelectric power plant using a moss biomonitoring. Air Qual Atmos Health 7:541–557. doi: 10.1007/s11869-014-0257-8
  27. Dmitriev AY, Pavlov SS (2013) Automatization of quantitative determination of element content in samples using neutron activation analysis on the IBR-2 reactor at the Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research. Phys Part Nucl Lett 10:33–36Google Scholar
  28. Dumurdzanov N, Serafimovski T, Burchfiel BC (2005) Cenozoic tectonics of Macedonia and its relation to the South Balkan extensional. Geosphere 1:1–22CrossRefGoogle Scholar
  29. Elias C, Fernandes EAN, França EJ, Bacchi MA, Tagliaferro FS (2008) Native bromeliads as biomonitors of airborne chemical elements in a Brazilian restinga forest. J Radioanal Nucl Chem 278:423–427CrossRefGoogle Scholar
  30. Fifield FW, Haines PJ (1995) Environmental analytical chemistry. Blackie Academic & Professional, LondonGoogle Scholar
  31. Filzmoser P, Garrettb RG, Reimann C (2005) Multivariate outlier detection in exploration geochemistry. Comput Geosci 31:579–587Google Scholar
  32. Frontasyeva MV, Pavlov SS (1999) REGATA experimental setup for air pollution studies. In: Problems of modern physics, Sissakian AN, Trubetskov DI (eds.), On the 90th anniversary of Saratov State University and the 40 years of the JINR-SSU collaboration, JINR, Dubna, pp 152–158Google Scholar
  33. Frontasyeva MV, Steinnes E (2004) Marine gradients of halogens in moss studied by epithermal neutron activation analysis. J Radioanal Nucl Chem 261:101–106CrossRefGoogle Scholar
  34. Frontasyeva MV, Grass F, Nazarov VM, Steinnes E (1995) Intercomparison of moss reference material by different multi-element techniques. J Radioanal Nucl Chem 2:371–379CrossRefGoogle Scholar
  35. Frontasyeva MV, Galinskaya TY, Krmar M, Matavuly M, Pavlov SS, Povtoreyko EA, Radnovic D, Steinnes E (2004) Atmospheric deposition of heavy metals in northern Serbia and Bosnia–Herzegovina studied by the moss biomonitoring, neutron activation analysis and GIS technology. J Radioanal Nucl Chem 259:141–144CrossRefGoogle Scholar
  36. Gjengedal E, Steinnes E (1990) Uptake of metal ions in moss from artificial precipitation. Environ Monit Assess 14:77–87CrossRefGoogle Scholar
  37. Groet SS (1976) Regional and local variations in heavy metal concentrations of bryophytes in the northeastern United States. Oikos 27:445–456CrossRefGoogle Scholar
  38. Harmens H, Buse A, Büker P, Norris D, Mills G, Williams B (2004) Heavy metal concentrations in European mosses: 2000/2001 survey. J Atmos Chem 49:425–436CrossRefGoogle Scholar
  39. Harmens H, Noris D, Viňas JA, Alber R, Aleksiayenak Y, Ashmore M, Barandovski L et al (2008) In: Harmens H, Noris D (eds) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005). Programme Coordination Centre for the ICP Vegetation, Centre for Ecology & Hydrology, Natural Environment Research Council, BangorGoogle Scholar
  40. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pesch R, Rühling A, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial and temporal trends in Europe. Environ Pollut 158:3144–3156CrossRefGoogle Scholar
  41. Harmens H, Mills G, Hayes F, Norris D, Aboal JR, Ahmad SS, Alber R, Alonso R, Aleksiayenak Y, Amadou HI, Barandovski L et al. (2013) Air pollution and vegetation. In: Harmens H, Mills G, Hayes F, Norris D (eds) Icp vegetation annual report 2012/2013, ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, UKGoogle Scholar
  42. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. Wiley, New YorkGoogle Scholar
  43. Hristozova G, Marinova S, Pavlovna Strelkova L, Goryainova Z, Frontasyeva MV, Stafilov T (2014) Atmospheric deposition study in the area of Kardzhali lead-zinc plant based on moss analysis. Am J Anal Chem 5:920–931CrossRefGoogle Scholar
  44. Institute for geological and mining exploration and investigation of nuclear and other mineral raw materials (1970) Geological map of SFR Yugoslavia (Scale 1: 500,000). Federal Geological Institute, BelgradeGoogle Scholar
  45. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (2005) Heavy metals in European mosses: 2005/2006 survey. Monitoring manual. http://icpvegetation.ceh.ac.uk/publications.htm
  46. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (2010) Heavy metals in European mosses: 2010 survey. Monitoring manual. http://icpvegetation.ceh.ac.uk/publications.htm
  47. Jovanovski G, Boev B, Makreski P (2012) Minerals from the Republic of Macedonia with an introduction to mineralogy. Macedonian Academy of Sciences and Arts, SkopjeGoogle Scholar
  48. Lazarevski A (1993) Climate in Macedonia. Kultura, Skopje (in Macedonian) Google Scholar
  49. Lazarov P, Serafimovski T (1997) Ore deposits and occurrences of energy raw materials in Republic of Macedonia. Faculty of Mining and Geology, Štip (in Macedonian)Google Scholar
  50. Le Maitre RW (1982) Numerical petrology, statistical interpretation of geochemical data. Elsevier, AmsterdamGoogle Scholar
  51. Lee CSL, Li X, Zhangb G, Pengb X, Zhangc L (2005) Biomonitoring of trace metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling Mountains and the Pearl River Delta, Southern China. Atmos Environ 39:397–407CrossRefGoogle Scholar
  52. Marinova S, Yurukova L, Frontasyeva MV, Steinnes E, Strelkova LP, Marinov A, Karadzhinova AG (2010) Air pollution studies in Bulgaria using the moss biomonitoring technique. Ecol Chem Eng S 17:37–52Google Scholar
  53. Pais I, Jones JB (1997) The handbook of trace elements. St. Lucie Press, Boca RatonGoogle Scholar
  54. Percy KE (1982) Heavy metal and sulphur concentrations in Sphagnum magellanicum Brid. in the maritime provinces, Canada. Water Air Soil Pollut 19:341–349Google Scholar
  55. Pison G, Rousseeuw PJ, Filzmoser P, Croux C (2000) A robust version of principal factor analysis. In: Betlehem JG, van der Heijden PGM (eds) COMPSTAT, Proceedings in Computational Statistics. Physica-Verlag, Heidelberg, pp 385–390Google Scholar
  56. Qarri F, Lazo P, Stafilov T, Frontasyeva M, Harmens H, Bekteshi L, Baceva K, Goryainova Z (2014) Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res 21:2506–2518Google Scholar
  57. Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206CrossRefGoogle Scholar
  58. Reimann C, Birke M, Demetriades A, Filzmoser P, O’Connor P (eds) (2014a) Chemistry of Europe’s agricultural soils—part A: methodology and interpretation of the GEMAS data set, Geologisches Jahrbuch (Reihe B), Heft 102. Schweizerbarth, Hannover, pp 1–528Google Scholar
  59. Reimann C, Birke M, Demetriades A, Filzmoser P, O’Connor P (eds) (2014b) Chemistry of Europe’s agricultural soils—part B: general background information and further analysis of the GEMAS data set, Geologisches Jahrbuch (Reihe B), Heft 103. Schweizerbarth, Hannover, pp 1–352Google Scholar
  60. Rühling Å, Steinnes E (eds) (1998) Atmospheric heavy metal deposition in Europe 1995–1996. NORD Environment, 1998:15 Nordic council of ministry, CopenhagenGoogle Scholar
  61. Rühling Å, Tyler G (1973) Heavy metal deposition in Scandinavia. Water Air Soil Pollut 2:445–455CrossRefGoogle Scholar
  62. Šajn R, Aliu M, Stafilov T, Alijagić J (2013) Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J Geochem Explor 134:1–16CrossRefGoogle Scholar
  63. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamić J, Heitzmann P, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SA, Ottesen RT, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe, part 1, background information, methodology and maps. Geological Survey of Finland, Espoo (http://weppi.gtk.fi/publ/foregsatlas/)
  64. Snedecor GW, Cochran WG (1967) Statistical methods. The Iowa State University Press, AmesGoogle Scholar
  65. Špirić Z, Vučković I, Stafilov T, Kušan V, Frontasyeva M (2013) Air pollution study in Croatia using moss biomonitoring and ICP–AES and AAS analytical techniques. Arc Environ Contam Toxicol 65:33–46CrossRefGoogle Scholar
  66. Stafilov T, Šajn R, Boev B, Cvetković J, Mukaetov D, Andreevski M (2008) Geochemical atlas of Kavadarci and theenvirons.Faculty of Natural Sciences and Mathematics, SkopjeGoogle Scholar
  67. Stafilov T, Peeva L, Nikov B, de Koning A (2009) In: Šajn R, Žilbert G, Alijagić J (eds) Industrial hazardous waste in the Republic of Macedonia, Applied Environmental Geochemistry—anthropogenic impact on human environment in the SE Europe. IN Proceedings Book. Geological Survey of Slovenia, Ljubljana, pp 108–112Google Scholar
  68. Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva MV, Strelkova LP (2010a) Heavy metal contamination of surface soils around a lead and zinc smelter in the Republic of Macedonia. J Hazard Mater 175:896–914CrossRefGoogle Scholar
  69. Stafilov T, Šajn R, Boev B, Cvetković J, Mukaetov D, Andreevski M, Lepitkova S (2010b) Distribution of some elements in surface soil over the Kavadarci Region, Republic of Macedonia. Environ Earth Sci 61:1515–1530CrossRefGoogle Scholar
  70. Stafilov T, Aliu M, Šajn R (2010c) Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica Region, Kosovo. Int J Environ Res Pub Health 7:4050–4061CrossRefGoogle Scholar
  71. Stafilov T, Šajn R, Balabanova B, Bačeva K (2012) Distribution of heavy metals in attic and deposited dust in the vicinity of copper ore processing and ferronickel smelter plants in the Republic of Macedonia. In: Wouters LB, Pauwels M (eds) Dust: sources, environmental concerns and control. Science Publishers, Hauppauge, pp 57–98, 978-1-61942-566-8 Google Scholar
  72. State Statistical Office of the Republic of Macedonia (2011) Environmental statistics, Skopje, http://www.stat.gov.mk/PrikaziPublikacija_en.aspx?id=20&rbr=457
  73. State Statistical Office of the Republic of Macedonia (2013) Environmental statistics, Skopje, http://www.stat.gov.mk/PrikaziPublikacija_en.aspx?id=20&rbr=291
  74. State Statistical Office of the Republic of Macedonia (2014) The Statistical Review No. 6.4.14.01 (775), Skopje. http://www.stat.gov.mk/PrikaziPoslednaPublikacija_en.aspx?id=8
  75. Steinnes E (1995) A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci Total Environ 160:243–249CrossRefGoogle Scholar
  76. Steinnes E, Frontasyeva MV (1995) Epithermal neutron activation analysis of mosses used to monitor heavy metal deposition around an iron smelter complex. Analyst 120:1437–1440CrossRefGoogle Scholar
  77. Steinnes E, Frontasyeva MV (2002) Marine gradients of halogens in soil studied by epithermal neutron activation analysis. J Radioanal Nucl Chem 253(1):173–177CrossRefGoogle Scholar
  78. Steinnes E, Berg T, Uggerud HT, Pfaffhuber KA (2011) Atmostærisk nedfall av 1095 tungmetaller i Norge Landsomfattende undersøkelse i 2010. Stallig program for forurensningsovervåking, Rappotur 1109/2011, 1096 (in Norvegian)Google Scholar
  79. Stuhlberger C (ed) (2009) Mining and environment in the Western Balkans. UNEP, Geneva, pp 108 http://www.unep.org/pdf/MiningBalkans_screen.pdf
  80. Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230CrossRefGoogle Scholar
  81. Templ M, Filzmoser P, Reimann C (2008) Cluster analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 23:2198–2213CrossRefGoogle Scholar
  82. Thöni L, Yurukova L, Bergamini A, Ilyin I, Matthaei D (2011) Temporal trends and spatial patterns of heavy metal concentrations in mosses in Bulgaria and Switzerland: 1990–2005. Atmos Environ 45:1899–1912CrossRefGoogle Scholar
  83. Walter H (1954) Grundlagen der pflanzenverbreitung, II Teil. Areakunde. E. Ulmer, SttutgartGoogle Scholar
  84. Wolterbeek HT (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21CrossRefGoogle Scholar
  85. Zechmeister HG (1995) Correlation between altitude and heavy metal deposition in the Alps. Environ Pollut 89:73–80CrossRefGoogle Scholar
  86. Zhang C, Selinus O (1998) Statistics and GIS in environmental geochemistry—some problems and solutions. J Geochem Explor 64(1–3):339–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lambe Barandovski
    • 1
  • Marina V. Frontasyeva
    • 2
  • Trajče Stafilov
    • 3
    Email author
  • Robert Šajn
    • 4
  • Tatyana M. Ostrovnaya
    • 2
  1. 1.Institute of Physics, Faculty of ScienceSs. Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Institute of Chemistry, Faculty of ScienceSs. Cyril and Methodius UniversitySkopjeMacedonia
  4. 4.Geological Survey of SloveniaLjubljanaSlovenia

Personalised recommendations