Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 19, pp 14442–14454 | Cite as

Effect-based assessment of persistent organic pollutant and pesticide dumpsite using mammalian CALUX reporter cell lines

  • B. PieterseEmail author
  • I. J. C. Rijk
  • E. Simon
  • B. M. A. van Vugt-Lussenburg
  • B. F. H. Fokke
  • M. van der Wijk
  • H. Besselink
  • R. Weber
  • B. van der Burg
12th IHPA Forum and selected studies on POPs

Abstract

A combined chemical and biological analysis of samples from a major obsolete pesticide and persistent organic pollutant (POP) dumpsite in Northern Tajikistan was carried out. The chemical analytical screening focused on a range of prioritized compounds and compounds known to be present locally. Since chemical analytics does not allow measurements of hazards in complex mixtures, we tested the use of a novel effect-based approach using a panel of quantitative high-throughput CALUX reporter assays measuring distinct biological effects relevant in hazard assessment. Assays were included for assessing effects related to estrogen, androgen, and progestin signaling, aryl hydrocarbon receptor-mediated signaling, AP1 signaling, genotoxicity, oxidative stress, chemical hypoxia, and ER stress. With this panel of assays, we first quantified the biological activities of the individual chemicals measured in chemical analytics. Next, we calculated the expected sum activity by these chemicals in the samples of the pesticide dump site and compared the results with the measured CALUX bioactivity of the total extracts of these samples. The results showed that particularly endocrine disruption-related effects were common among the samples. This was consistent with the toxicological profiles of the individual chemicals that dominated these samples. However, large discrepancies between chemical and biological analysis were found in a sample from a burn place present in this site, with biological activities that could not be explained by chemical analysis. This is likely to be caused by toxic combustion products or by spills of compounds that were not targeted in the chemical analysis.

Keywords

Pesticides Persistent organic pollutants (POPs) Mixture toxicity Bioassay CALUX Endocrine disruption AhR Risk assessment 

Notes

Acknowledgments

Part of this work was funded by the BE-Basic foundation, which was granted a FES subsidy from the Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL&I).

References

  1. Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85:747–752CrossRefGoogle Scholar
  2. Ashida R, Tominaga K, Sasaki E, Watanabe T, Fujiwara Y, Oshitani N, Higuchi K, Mitsuyama S, Iwao H, Arakawa T (2005) AP-1 and colorectal cancer. Inflammopharmacology 13:113–125CrossRefGoogle Scholar
  3. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Benigni R, Battistelli CL, Bossa C, Tcheremenskaia O, Crettaz P (2013) New perspectives in toxicological information management, and the role of ISSTOX databases in assessing chemical mutagenicity and carcinogenicity. Mutagenesis 28:401–409. doi: 10.1093/mutage/get016 CrossRefGoogle Scholar
  4. Benigni R, Battistelli CL, Bossa C, Tcheremenskaia O, Crettaz P (2013) New perspectives in toxicological information management, and the role of ISSTOX databases in assessing chemical mutagenicity and carcinogenicity. Mutagenesis 28(4):401–9. doi: 10.1093/mutage/get016
  5. Besselink HT, Schipper C, Klamer H, Leonards P, Verhaar H, Felzel E, Murk AJ, Thain J, Hosoe K, Schoeters G, Legler J, Brouwer B (2004) Intra- and interlaboratory calibration of the DR CALUX bioassay for the analysis of dioxins and dioxin-like chemicals in sediments. Environ Toxicol Chem 23(12):2781–2789CrossRefGoogle Scholar
  6. Brand W, de Jongh CM, van der Linden SC, Mennes W, Puijker LM, van Leeuwen CJ, van Wezel AP, Schriks M, Heringa MB (2013) Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays. Environ Int 55:109–118CrossRefGoogle Scholar
  7. De Coster S, van Larebeke N (2012) Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Public Health 2012:713696CrossRefGoogle Scholar
  8. Dutch Government (2014) Annex B to the Dutch guidelines on soil qualities: background values and maximum values for soil and dredging sludge. http://wetten.overheid.nl/BWBR0023085/BijlageB/geldigheidsdatum_15-05-2014
  9. Feng S, Cao Z, Wang X (2013) Role of aryl hydrocarbon receptor in cancer. Biochim Biophys Acta 1836:197–210. doi: 10.1016/j.bbcan.2013.05.001 Google Scholar
  10. Food and Agriculture Organization of the United Nations (FAO) (2001) The ticking time bomb: toxic pesticide waste dumps. Newsroom 9 http://www.fao.org/english/newsroom/highlights/2001/010502-e.htm
  11. Food and Agriculture Organization of the United Nations (FAO) (2014) Where are the stocks? http://www.fao.org/agriculture/crops/obsolete-pesticides/where-stocks/en/
  12. Garrison PM, Tullis K, Aarts JM, Brouwer A, Giesy JP, Denison MS (1996) Species-specific recombinant cell lines as bioassay systems for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals. Fundam Appl Toxicol 30(2):194–203CrossRefGoogle Scholar
  13. Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11(3):M111.014050. doi: 10.1074/mcp.M111.014050 CrossRefGoogle Scholar
  14. Gibson DA, Saunders PT (2013) Endocrine disruption of estrogen action and female reproductive tract cancers. Endocr Relat Cancer. Oct 25. [Epub ahead of print]Google Scholar
  15. Giesy JP, Kannan K (1998) Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit Rev Toxicol 28(6):511–569CrossRefGoogle Scholar
  16. Gregoraszczuk EL, Ptak A (2013) Endocrine-disrupting chemicals: some actions of POPs on female reproduction. Int J Endocrinol 2013:828532Google Scholar
  17. Holt E, Weber R, Stevenson G, Gaus C (2010) Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) impurities in pesticides: a neglected source of contemporary relevance. Environ Sci Technol 44(14):5409–5415. doi: 10.1021/es903915k CrossRefGoogle Scholar
  18. Holt E, Weber R, Stevenson G, Gaus C (2012) Formation of dioxins during exposure of pesticide formulations to sunlight. Chemosphere 88:364–370CrossRefGoogle Scholar
  19. Huang J, Gao J, Yu G, Yamazaki N, Deng S, Wang B, Weber R (2014) Unintentional formed PCDDs, PCDFs and DL-PCBs as impurities in Chinese pentachloronitrobenzene products. Environ Sci Pollut Res in printGoogle Scholar
  20. Italian Ministry for the Environment, Land and Sea (2006) Transboundary risk assessment on the hazardous waste sites of Kanibadam, Khaidarken, Kadamjai in the Ferghana Valley, Regional Synthesis Report. 2006. http://enrin.grida.no/htmls/ferghana_valley/ferghana_valley_soe/pdf/rehra-eng.pdf
  21. Jiang L, Sheikh MS, Huang Y (2010) Decision making by p53: life versus death. Mol Cell Pharmacol 2:69–77Google Scholar
  22. Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect 115(Suppl 1):98–105. doi: 10.1289/ehp.9357 CrossRefGoogle Scholar
  23. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320 CrossRefGoogle Scholar
  24. Marhefka CA, Moore BM 2nd, Bishop TC, Kirkovsky L, Mukherjee A, Dalton JT, Miller DD (2001) Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. J Med Chem 24:1729–1740CrossRefGoogle Scholar
  25. Marlowe JL, Puga A (2005) Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 96(6):1174–1184CrossRefGoogle Scholar
  26. Matsusue K, Ariyoshi N, Oguri K, Koga N, Yoshimura H (1996) Involvement of cytochrome b5 in the metabolism of tetrachlorobiphenyls catalyzed by CYP2B1 and CYP1A1. Chemosphere 32(3):517–523CrossRefGoogle Scholar
  27. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. doi: 10.1016/j.taap.2013.01.025 CrossRefGoogle Scholar
  28. Mrema EJ, Rubino FM, Brambilla G, Moretto A, Tsatsakis AM, Colosio C (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307:74–88. doi: 10.1016/j.tox.2012.11.015 CrossRefGoogle Scholar
  29. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8. doi: 10.1038/ncb2641 CrossRefGoogle Scholar
  30. Nakatsuru Y, Wakabayashi K, Fujii-Kuriyama Y, Ishikawa T, Kusama K, Ide F (2004) Dibenzo[A, L]pyrene-induced genotoxic and carcinogenic responses are dramatically suppressed in aryl hydrocarbon receptor-deficient mice. Int J Cancer 112:179–183CrossRefGoogle Scholar
  31. Netherlands Standardization Institute (NEN) (2010) NEN 6980:2008+C1:2010+C2:2011 nl: Soil—quantitative analysis of organochlorine pesticides, pentachlorobiphenyls, and semi-volatile chlorobenzenes by gas chromatography. (in Dutch). http://www.nen.nl/NEN-Shop/Norm/NEN-69802008C12010C22011-nl-1.htm
  32. Papadopoulou E, Vafeiadi M, Agramunt S, Mathianaki K, Karakosta P, Spanaki A, Besselink H, Kiviranta H, Rantakokko P, Sarri K, Koutis A, Chatzi L, Kogevinas M (2013) Maternal diet, prenatal exposure to dioxins and other persistent organic pollutants and anogenital distance in children. Sci Total Environ 461–462:222–229CrossRefGoogle Scholar
  33. Piersma AH, Bosgra S, van Duursen MB, Hermsen SA, Jonker LR, Kroese ED, van der Linden SC, Man H, Roelofs MJ, Schulpen SH, Schwarz M, Uibel F, van Vugt-Lussenburg BM, Westerhout J, Wolterbeek AP, van der Burg B (2013) Evaluation of an alternative in vitro test battery for detecting reproductive toxicants. Reprod Toxicol 38:53–64. doi: 10.1016/j.reprotox.2013.03.002 CrossRefGoogle Scholar
  34. Pieterse B, Felzel E, Winter R, van der Burg B, Brouwer A (2013) PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. Environ Sci Technol 47:11651–11659. doi: 10.1021/es403810w CrossRefGoogle Scholar
  35. Porpora MG, Medda E, Abballe A, Bolli S, De Angelis I, di Domenico A, Ferro A, Ingelido AM, Maggi A, Panici PB, De Felip E (2009) Endometriosis and organochlorinated environmental pollutants: a case–control study on Italian women of reproductive age. Environ Health Perspect 117(7):1070–1075CrossRefGoogle Scholar
  36. Pyrzynska B, Mosieniak G, Kaminska B (2000) Changes of the trans-activating potential of AP-1 transcription factor during cyclosporin A-induced apoptosis of glioma cells are mediated by phosphorylation and alterations of AP-1 composition. J Neurochem 74(1):42–51CrossRefGoogle Scholar
  37. Quaedackers ME, Van Den Brink CE, Wissink S, Schreurs RH, Gustafsson JA, Van Der Saag PT, Van Der Burg BB (2001) 4-hydroxytamoxifen trans-represses nuclear factor-kappa B activity in human osteoblastic U2-OS cells through estrogen receptor (ER)alpha, and not through ER beta. Endocrinology 142:1156–1166Google Scholar
  38. Ritter L, Solomon KR, Forget J (1995) A review on selected persistent organic pollutants. Prepared for The International Programme on Chemical Safety (IPCS). http://cdrwww.who.int/ipcs/assessment/en/pcs_95_39_2004_05_13.pdf
  39. Salnikow K, Davidson T, Zhang Q, Chen LC, Su W, Costa M (2003) The involvement of hypoxia-inducible transcription factor-1-dependent pathway in nickel carcinogenesis. Cancer Res 63(13):3524–3530Google Scholar
  40. Scheringer M, Strempel S, Hukari S, Ng CA, Blepp M, Hungerbühler K (2012) How many persistent organic pollutants should we expect? Atmos Pollut Res 3:383–391CrossRefGoogle Scholar
  41. Schrader TJ, Boyes BG, Matula TI, Héroux-Metcalf C, Langlois I, Downie RH (1998) In vitro investigation of toxaphene genotoxicity in S. typhimurium and Chinese hamster V79 lung fibroblasts. Mutat Res 413:159–168CrossRefGoogle Scholar
  42. Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, Laughner E, Yu A (2000) Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv Exp Med Biol 475:123–130CrossRefGoogle Scholar
  43. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136CrossRefGoogle Scholar
  44. Shuttleworth KL, Cerniglia CE (1995) Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54(1–3):291–302CrossRefGoogle Scholar
  45. Simmons SO, Fan CY, Yeoman K, Wakefield J, Ramabhadran R (2011) Nrf2 oxidative stress induced by heavy metals is cell type dependent. Curr Chem Genom 5:1–12. doi: 10.2174/1875397301105010001 CrossRefGoogle Scholar
  46. Sonneveld E, Jansen HJ, Riteco JA, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83(1):136–148CrossRefGoogle Scholar
  47. Sonneveld E, Riteco JA, Jansen HJ, Pieterse B, Brouwer A, Schoonen WG, van der Burg B (2006) Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities. Toxicol Sci 89(1):173–187CrossRefGoogle Scholar
  48. Stockholm Convention (2001) Stockholm Convention on persistent organic pollutants. http://www.pops.int/documents/convtext/convtext_en.pdf
  49. Suzuki G, Tue NM, van der Linden S, Brouwer A, van der Burg B, van Velzen M, Lamoree M, Someya M, Takahashi S, Isobe T, Tajima Y, Yamada TK, Takigami H, Tanabe S (2011) Identification of major dioxin-like compounds and androgen receptor antagonist in acid-treated tissue extracts of high trophic-level animals. Environ Sci Technol 45(23):10203–10211CrossRefGoogle Scholar
  50. UNEP (2013) Toolkit for identification and quantification of releases of dioxins, furans and other unintentional POPs under Article 5 of the Stockholm Convention on Persistent Organic Pollutants. http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-TOOLKIT-TOOLK-PCDD-PCDF-2012.En.pdf
  51. Vakharia DD, Gierthy JF (2000) Use of a combined human liver microsome-estrogen receptor binding assay to assess potential estrogen modulating activity of PCB metabolites. Toxicol Lett 114(1–3):55–65CrossRefGoogle Scholar
  52. Van der Burg B, Pieterse B, Buist H, Lewin G, Van der Linden SC, Man HY, Rorije E, Piersma AH, Mangelsdorf I, Wolterbeek AP, Kroese ED, Van Vugt-Lussenburg B (2014) A high throughput screening system for predicting chemically-induced reproductive organ deformities. Reprod Toxicol. doi: 10.1016/j.reprotox.2014.11.011 Google Scholar
  53. van der Linden SC, von Bergh AR, van Vught-Lussenburg BM, Jonker LR, Teunis M, Krul CA, van der Burg B (2014) Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res 760:23–32CrossRefGoogle Scholar
  54. Vivat V, Gofflo D, Garcia T, Wurtz JM, Bourguet W, Philibert D, Gronemeyer H (1997) Sequences in the ligand-binding domains of the human androgen and progesterone receptors which determine their distinct ligand identities. J Mol Endocrinol 18(2):147–160CrossRefGoogle Scholar
  55. Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch H, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Wölz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges. Environ Sci Pollut Res 15:363–393CrossRefGoogle Scholar
  56. Weber R, Watson A, Forter M, Oliaei F (2011) Persistent organic pollutants and landfills—a review of past experiences and future challenges. Waste Manag Res 29(1):107–121CrossRefGoogle Scholar
  57. Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K (2013) Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest 143(4):1098–1105. doi: 10.1378/chest.12-2133 CrossRefGoogle Scholar
  58. White SS, Birnbaum LS (2009) An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:197–211. doi: 10.1080/10590500903310047 CrossRefGoogle Scholar
  59. WHO, UNEP (2013) State of the science of endocrine disrupting chemicals-2012. http://unep.org/pdf/9789241505031_eng.pdf
  60. World Health Organization (2011) Guidelines for drinking water-quality; chemical fact sheets. http://www.who.int/water_sanitation_health/publications/2011/9789241548151_ch12.pdf?ua=1
  61. Xia M, Huang R, Sun Y, Semenza GL, Aldred SF, Witt KL, Inglese J, Tice RR, Austin CP (2009) Identification of chemical compounds that induce HIF-1alpha activity. Toxicol Sci 112(1):153–163. doi: 10.1093/toxsci/kfp123 CrossRefGoogle Scholar
  62. Zahov S, Hollert H, Seiler T-B, Weber R, Holt E (2014) Distinguishing between the mutagenicity, cytotoxicity and dioxin-like activity of pesticides and their impurities. Env. Sci Pollut Res submittedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • B. Pieterse
    • 1
    Email author
  • I. J. C. Rijk
    • 2
  • E. Simon
    • 1
  • B. M. A. van Vugt-Lussenburg
    • 1
  • B. F. H. Fokke
    • 3
  • M. van der Wijk
    • 2
  • H. Besselink
    • 1
  • R. Weber
    • 4
  • B. van der Burg
    • 1
  1. 1.BioDetection Systems B.V.AmsterdamThe Netherlands
  2. 2.Witteveen+Bos Consulting Engineers B.V.DeventerThe Netherlands
  3. 3.Tauw B.V.DeventerThe Netherlands
  4. 4.POPs Environmental ConsultingSchwaebisch GmuendGermany

Personalised recommendations