Environmental Science and Pollution Research

, Volume 22, Issue 19, pp 14820–14828 | Cite as

Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron

  • Aroa López
  • Milagros Rico
  • J. Magdalena Santana-Casiano
  • Aridane G. González
  • Melchor González-Dávila
Research Article

Abstract

The present study investigates the phenolic profile of exudates and extracts of the green algae Dunaliella tertiolecta, harvested in natural seawater in the absence (control) and in the presence of Cu(II) (315 and 790 nmol L−1) and Fe(III) (900 nmol L−1) in order to identify and quantify the phenolic compounds produced under metallic stress conditions. The presence of metal ions modifies the growth of cells and changes cell metabolism by producing phenolic compounds adapted to the solution. The use of reversed-phase high-performance liquid chromatography (RP-HPLC) permitted the identification of 14 phenolic constituents. The concentration and type of polyphenols detected in cell extracts and in solution are directly related with the metal and its concentration during growth cultures, achieving 1.4 times higher levels of polyphenols under 790 nmol Cu(II) L−1 with respect to the control experiments. Microalga excretes polyphenols to be adapted to the environmental conditions. Gentisic acid, (+) catechin and (−) epicatechin, the most prominent phenolic compounds detected in the algae extracts, showed high antioxidant activity in inhibiting 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. This potent activity may be related to its presence in cells and exudates in high concentrations.

Keywords

Copper Iron Phenolic compounds Growth inhibition Dunaliella tertiolecta 

References

  1. Abd El-Baky HH, El Baz FK, El-Baroty GS (2009) Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr J Biotechnol 8(24):7059–7067. doi:10.5897/AJB2009.000-9548 Google Scholar
  2. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensm Wiss Technol 30:609–615. doi:10.1006/fstl.1997.0240 CrossRefGoogle Scholar
  3. Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” food- possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675. doi:10.1111/j.1541-4337.2010.00132.x CrossRefGoogle Scholar
  4. Cirulis JT, Scott JA, Ross GM (2013) Management of oxidative stress by microalgae. Can J Physiol Pharmacol 91(1):15–21. doi:10.1139/cjpp-2012-0249 CrossRefGoogle Scholar
  5. Croot PL, Moffett JW, Brand LE (2000) Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnol Oceanogr 45(3):619–627. doi:10.4319/lo.2000.45.3.0619 CrossRefGoogle Scholar
  6. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352. doi:10.3390/molecules15107313 CrossRefGoogle Scholar
  7. Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80(12):1744–1756. doi:10.1002/1097-0010(20000915)80:12,1744::AIDJSFA725.3.0.CO;2-W CrossRefGoogle Scholar
  8. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2011) Scientific opinion on the reevaluation of butylated hydroxyanisole BHA (E 320) as a food additive. EFSA J 9(10):2392 (49pp) Google Scholar
  9. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) (2012) Scientific opinion on the reevaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA J 10(3):2588 (43pp) Google Scholar
  10. Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47(1):41–54. doi:10.1016/0304-4203(94)90012-4 CrossRefGoogle Scholar
  11. González AG, Shirokova LS, Pokrovsky OS, Emnova EE, Martínez RE, Santana-Casiano JM, González-Dávila M, Pokrovski GS (2010) Adsorption of copper on Pseudomonas aureofaciens: protective role of surface expolysaccharides. J Colloid Interface Sci 350(1):305–314CrossRefGoogle Scholar
  12. González AG, Santana-Casiano JM, González-Davila M, Pérez N (2012) Effect of organic exudates of Phaeodactylum tricornutum on the Fe(II) oxidation rate constant. Cienc Mar 38:245–261CrossRefGoogle Scholar
  13. González-Dávila M, Santana-Casiano JM, Pérez-Peña J, Millero FJ (1995) Binding of Cu(II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29:289–301. doi:10.1021/es00002a004 CrossRefGoogle Scholar
  14. Guangqiu Q, Chongling Y, Haoliang L (2007) Influence of heavy metals on the carbohydrate and phenolics in mangrove, Aegiceras corniculatum L., seedlings. Bull Environ Contam Toxicol 78(6):440–444. doi:10.1007/s00128-007-9204-9 CrossRefGoogle Scholar
  15. Guillard MML (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60CrossRefGoogle Scholar
  16. Imani S, Rezaei-Zarchi S, Hashemi M, Borna H, Javid A, Ali mohamad Zand AM, Abarghouei HB (2011) Hg, Cd and Pb heavy metal bioremediation by Dunaliella alga. J Med Plant Res 5(13):2775–2780Google Scholar
  17. Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205(1):25–44. doi:10.1023/A:1004356007312 CrossRefGoogle Scholar
  18. Jung C, Maeder V, Funk F, Frey B, Sticher H, Frossard E (2003) Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil 252(1):301–312. doi:10.1023/A:1024775803759 CrossRefGoogle Scholar
  19. Koukal B, Rosse P, Reinhardt A, Ferraria B, Wilkinson KJ, Loizeau J-L, Dominik J (2007) Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation. Water Res 41(1):63–70. doi:10.1016/j.watres.2006.09.014 CrossRefGoogle Scholar
  20. Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212(3):323–331. doi:10.1007/s004250000400 CrossRefGoogle Scholar
  21. Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH, Jolley DF (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat Toxicol 89(2):82–93. doi:10.1016/j.aquatox.2008.06.003 CrossRefGoogle Scholar
  22. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530Google Scholar
  23. Moreno-Garrido I, Lubián LM, Soares AMVM (2000) Influence of cellular density on determination of EC50 in microalgal growth inhibition tests. Ecotoxicol Environ Saf 47(2):112–116. doi:10.1006/eesa.2000.1953 CrossRefGoogle Scholar
  24. Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3:793–829. doi:10.3390/pharmaceutics3040793 CrossRefGoogle Scholar
  25. Nikookar K, Moradshahi A, Hosseini L (2005) Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity. Biomol Eng 22:141–146. doi:10.1016/j.bioeng.2005.07.001 CrossRefGoogle Scholar
  26. Onofrejová L, Vasickova J, Klejdus B, Stratil P, Misurcova L, Kracmar S, Kopecky J, Vacek J (2010) Bioactive phenols in algae: the application of pressurizaed-liquid and solid-phase extraction techniques. J Pharm Biomed Anal 51(2):464–470. doi:10.1016/j.jpba.2009.03.027 CrossRefGoogle Scholar
  27. Oven M, Grill E, Golan-Goldhirsh A, Kutchan T, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60(5):467–474. doi:10.1016/S0031-9422(02)00135-8 CrossRefGoogle Scholar
  28. Özkoc HB, Taylan ZS (2010) Assessment of various parameters of metal biology in marine microalgae Phaeodactylum tricornutum and Dunaliella tertiolecta. Fresenius Environ Bull 19:29812986Google Scholar
  29. Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10. doi:10.1016/j.chemosphere.2005.11.024 CrossRefGoogle Scholar
  30. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. doi:10.1002/anie.201000044 CrossRefGoogle Scholar
  31. Reische DW, Lillard DA, Eitenmiller RR (2002) Antioxidants. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 423–448Google Scholar
  32. Rico M, López A, Santana-Casiano JM, González AG, González-Dávila M (2013) Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr 58(1):144–152. doi:10.4319/lo.2013.58.1.0144 CrossRefGoogle Scholar
  33. Rose AL, Waite TD (2003) Kinetic of iron complexation by dissolved natural organic matter in coastal waters. Mar Chem 84(1–2):85–103. doi:10.1016/S0304-4203(03)00113-0 CrossRefGoogle Scholar
  34. Santana-Casiano JM, González-Dávila M, Rodríguez MJ, Millero FJ (2000) The effect of organic compounds in the oxidation kinetics of Fe(II). Mar Chem 70:211–222. doi:10.1016/S0304-4203(00)00027-X CrossRefGoogle Scholar
  35. Santana-Casiano JM, González-Dávila M, González AG, Rico M, López A, Martel A (2014) Characterization of polyphenol exudates from Phaeodactylum tricornutum and their effects on the chemistry of Fe(II)-Fe(III). Mar Chem 158:10–16. doi:10.1016/j.marchem.2013.11.001 CrossRefGoogle Scholar
  36. Suresh K, Subramanyam C (1998) Polyphenols are involved in copper binding to cell walls of Neurospora crassa. J Inorg Biochem 69:209–215. doi:10.1016/S0162-0134(97)10001-0 CrossRefGoogle Scholar
  37. Van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157. doi:10.1016/0304-4203(95)00032-M CrossRefGoogle Scholar
  38. Wang C, Lu J, Zhang S, Wang P, Hou J, Qian J (2011) Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol Environ Saf 74(5):1297–1303. doi:10.1016/j.ecoenv.2011.03.005 CrossRefGoogle Scholar
  39. Wells ML, Trick CG, Cochlan WP, Hughes MP, Trainer VL (2005) Domoic acid: the synergy of iron, copper, and the toxicity of diatoms. Limnol Oceanogr 50(6):1908–1917. doi:10.4319/lo.2005.50.6.1908 CrossRefGoogle Scholar
  40. Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88(11):1721–1731. doi:10.1016/j.biochi.2006.09.008 CrossRefGoogle Scholar
  41. Wu J, Luther GW (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50:159–177. doi:10.1016/j.biochi.2006.09.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aroa López
    • 1
  • Milagros Rico
    • 1
  • J. Magdalena Santana-Casiano
    • 1
  • Aridane G. González
    • 1
  • Melchor González-Dávila
    • 1
  1. 1.Departamento de Química, Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations