Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 24, pp 19342–19351 | Cite as

Aquifer community structure in dependence of lithostratigraphy in groundwater reservoirs

  • Andrea Beyer
  • Michael Rzanny
  • Aileen Weist
  • Silke Möller
  • Katja Burow
  • Falko Gutmann
  • Stefan Neumann
  • Julia Lindner
  • Steffen Müsse
  • Hanka Brangsch
  • Jennifer Stoiber-Lipp
  • Martin Lonschinski
  • Dirk Merten
  • Georg Büchel
  • Erika KotheEmail author
Alteration and element mobility at the microbe-mineral interface

Abstract

Groundwater microbiology with respect to different host rocks offers new possibilities to describe and map the habitat harboring approximately half of Earths’ biomass. The Thuringian Basin (Germany) contains formations of the Permian (Zechstein) and Triassic (Muschelkalk and Buntsandstein) with outcrops and deeper regions at the border and central part. Hydro(geo)chemistry and bacterial community structure of 11 natural springs and 20 groundwater wells were analyzed to define typical patterns for each formation. Widespread were Gammaproteobacteria, while Bacilli were present in all wells. Halotolerant and halophilic taxa were present in Zechstein. The occurrence of specific taxa allowed a clear separation of communities from all three lithostratigraphic groups. These specific taxa could be used to follow fluid movement, e.g., from the underlying Zechstein or from nearby saline reservoirs into Buntsandstein aquifers. Thus, we developed a new tool to identify the lithostratigraphic origin of sources in mixed waters. This was verified with entry of surface water, as species not present in the underground Zechstein environments were isolated from the water samples. Thus, our tool shows a higher resolution as compared to hydrochemistry, which is prone to undergo fast dilution if water mixes with other aquifers. Furthermore, the bacteria well adapted to their respective environment showed geographic clustering allowing to differentiate regional aquifers.

Keywords

Muschelkalk Buntsandstein Zechstein Lithostratigraphy Thuringian basin Groundwater Bacterial communities 

Notes

Acknowledgments

The authors thank the projects INFLUINS funded by BMBF and RTG 1257 funded by DFG under the umbrella of the Graduate School JSMC. We are indebted to the well owners, graduation works, and health resorts for their kind support. The TLUG Weimar, especially Jörn Geletneky, LAGB of Saxony-Anhalt, and Jörn Engelhardt are thanked for their assistance.

Compliance with ethical standards

There are no potential conflicts of interest, research is not involving human participants or animals, and all authors agree to the submission by giving their informed consent.

Supplementary material

11356_2015_4682_MOESM1_ESM.doc (276 kb)
ESM 1 (DOC 276 kb)
11356_2015_4682_MOESM2_ESM.doc (100 kb)
ESM 2 (DOC 99 kb)

References

  1. Amalfitano S, Del Bon A, Zoppini A, Ghergo S, Fazi S, Parrone D, Casella P, Stano F, Preziosi E (2014) Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas. Water Res 65:384–394CrossRefGoogle Scholar
  2. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces sp. J Basic Microbiol 40:295–301CrossRefGoogle Scholar
  3. Balkwill DL (1989) Numbers, diversity, and morphological-characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J 7:33–52CrossRefGoogle Scholar
  4. Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizo JG, Bullen HA, Hoehler TM, Barton HA (2010) Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J 27:444–454CrossRefGoogle Scholar
  5. Beloin RM, Sinclair JL, Ghiorse WC (1988) Distribution and activity of microorganisms in subsurface sediments of a pristine study site in Oklahoma. Microb Ecol 16:85–97CrossRefGoogle Scholar
  6. Beyer A, Weist A, Brangsch H, Stoiber-Lipp J, Kothe E (2014) Aquifer microbiology at different geogenic settings for environmental biogeotechnology. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 557–577Google Scholar
  7. Ellenberg J, Lenk J (2012) Geologie erleben: Saale-Holzland und Jena. Jenzig, GermanyGoogle Scholar
  8. Farmer JJ, Arduino MJ, Hickman-Brenner FW (2006) The genera Aeromonas and Plesiomonas. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New YorkGoogle Scholar
  9. Fitts C (2002) Groundwater science. Academic Press, New YorkGoogle Scholar
  10. Flynn TM, Sanford RA, Ryu H, Bethke CM, Levine AD, Ashbolt NJ, Domingo JWS (2013) Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol 13:146–162CrossRefGoogle Scholar
  11. Goldscheider N, Hunkeler D, Rossi P (2006) Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14:926–941CrossRefGoogle Scholar
  12. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649–677CrossRefGoogle Scholar
  13. Hedi A, Sadfi N, Fardeau ML, Rebib H, Cayol JL, Ollivier B, Boudabous A (2009) Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid Salt Lake (Tunisia) under aerobic conditions. Int J Microbiol 2009:731786CrossRefGoogle Scholar
  14. Henningsen D, Katzung G (2007) Einführung in die Geologie Deutschlands. Weinheim, SpektrumGoogle Scholar
  15. Hunkeler D, Goldscheider N, Rossi P, Burn C (2006) Biozönosen im Grundwasser. Schweizerische Eidgenossenschaft, BAFU, BernGoogle Scholar
  16. Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Preparation and analysis of genomic and plasmid DNA. In: Kieser TBM, Buttner MJ, Chater KF, Hopwood DA (eds) Practical Streptomyces genetics. John Innes Foundation, Norwich, pp 170–171Google Scholar
  17. Küster Y, Leiss B, Schramm M (2010) Structural characteristics of the halite fabric type ‘Kristallbrocken’ from the Zechstein Basin with regard to its development. Int J Earth Sci 99:505–526CrossRefGoogle Scholar
  18. Liu K, Jiao JJ, Gu JD (2014) Investigation on bacterial community and diversity in the multilayer aquifer-aquitard system of the Pearl River Delta, China. Ecotoxicology 23:2041–2052CrossRefGoogle Scholar
  19. Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33:365–381CrossRefGoogle Scholar
  20. Lu SP, Gischkat S, Reiche M, Akob DM, Hallberg KB, Kusel K (2010) Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 76:8174–8183CrossRefGoogle Scholar
  21. Magurran AE (2004) Measuring biological diversity. Wiley, LondonGoogle Scholar
  22. Missimer TM, Hoppe-Jones C, Jadoon KZ, Li D, Al-Mashharawi SK (2014) Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies. Hydrogeol J 22:1921–1934CrossRefGoogle Scholar
  23. Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60:1572–1580Google Scholar
  24. Navarro-Noya YE, Suárez-Arriaga MC, Rojas-Valdes A, Montoya-Ciriaco NM, Gómez-Acata S, Fernández-Luqueño F, Dendooven L (2013) Pyrosequencing analysis of the bacterial community in drinking water wells. Microb Ecol 66:19–29CrossRefGoogle Scholar
  25. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48CrossRefGoogle Scholar
  26. Pronk M, Goldscheider N, Zopfi J (2009) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17:37–48CrossRefGoogle Scholar
  27. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7Google Scholar
  28. Sehgal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169CrossRefGoogle Scholar
  29. Vaz-Moreira I, Nunes OC, Manaia CM (2012) Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ 426:366–374CrossRefGoogle Scholar
  30. Villalobo A, Roldan JM, Rivas J, Cardenas J (1977) Assimilatory nitrate reductase from Acinetobacter calcoaceticus. Arch Microbiol 112:127–132CrossRefGoogle Scholar
  31. Weber H (1955) Einführung in die Geologie Thüringens. DVW, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrea Beyer
    • 1
  • Michael Rzanny
    • 2
  • Aileen Weist
    • 1
  • Silke Möller
    • 1
  • Katja Burow
    • 3
  • Falko Gutmann
    • 1
  • Stefan Neumann
    • 3
  • Julia Lindner
    • 1
  • Steffen Müsse
    • 1
  • Hanka Brangsch
    • 1
  • Jennifer Stoiber-Lipp
    • 1
  • Martin Lonschinski
    • 3
  • Dirk Merten
    • 3
  • Georg Büchel
    • 3
  • Erika Kothe
    • 1
    Email author
  1. 1.Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
  2. 2.Institute of EcologyFriedrich Schiller University JenaJenaGermany
  3. 3.Institute of GeosciencesFriedrich Schiller University JenaJenaGermany

Personalised recommendations