Environmental Science and Pollution Research

, Volume 22, Issue 24, pp 19317–19325 | Cite as

Classification and identification of pigmented cocci bacteria relevant to the soil environment via Raman spectroscopy

  • Vinay Kumar
  • Bernd Kampe
  • Petra Rösch
  • Jürgen Popp
Alteration and element mobility at the microbe-mineral interface


A soil habitat consists of a significant number of bacteria that cannot be cultivated by conventional means, thereby posing obvious difficulties in their classification and identification. This difficulty necessitates the need for advanced techniques wherein a well-compiled biomolecular database consisting of the already cultivable bacteria can be used as a reference in an attempt to link the noncultivable bacteria to their closest phylogenetic groups. Raman spectroscopy has been successfully applied to taxonomic studies of many systems like bacteria, fungi, and plants relying on spectral differences contributed by the variation in their overall biomolecular composition. However, these spectral differences can be obscured due to Raman signatures from photosensitive microbial pigments like carotenoids that show enormous variation in signal intensity hindering taxonomic investigations. In this study, we have applied laser-induced photobleaching to expel the carotenoid signatures from pigmented cocci bacteria. Using this method, we have investigated 12 species of pigmented bacteria abundant in soil habitats belonging to three genera mainly Micrococcus, Deinococcus, and Kocuria based on their Raman spectra with the assistance of a chemometric tool known as the radial kernel support vector machine (SVM). Our results demonstrate the potential of Raman spectroscopy as a minimally invasive taxonomic tool to identify pigmented cocci soil bacteria at a single-cell level.


Raman spectroscopy Pigmented soil bacteria Carotenoids Photobleaching Bacterial identification and classification Radial kernel SVM 



This work is financially supported by the German Research Foundation (DFG) under the grant GRK 1257/2: “Alteration and element mobility at the microbe-mineral interface.”


  1. Baranska M, Schulz H, Kruger H, Quilitzsch R (2005) Chemotaxonomy of aromatic plants of the genus Origanum via vibrational spectroscopy. Anal Bioanal Chem 381:1241–1247CrossRefGoogle Scholar
  2. Baranski R, Baranska M, Schulz H, Simon PW, Nothnagel T (2006) Single seed Raman measurements allow taxonomical discrimination of Apiaceae accessions collected in gene banks. Biopolymers 81:497–505CrossRefGoogle Scholar
  3. Bocklitz T, Walter A, Hartmann K, Rösch P, Popp J (2011) How to pre-process Raman spectra for reliable and stable models. Anal Chim Acta 704:47–56CrossRefGoogle Scholar
  4. Boser BE, Guyon IM, Vapnik V (1992) A training algorithm for optimal margin classifiers. Proc Fifth Ann Workshop Comput Learn Theory 144–152Google Scholar
  5. Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB 9:1551–1558Google Scholar
  6. Britton G, Liaaen Jensen S, Pfander H (2008) Carotenoids volume 4: natural functions. Springer, GermanyCrossRefGoogle Scholar
  7. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRefGoogle Scholar
  8. Chan JW et al (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90:648–656CrossRefGoogle Scholar
  9. Cheng WT, Liu MT, Liu HN, Lin SY (2005) Micro Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech 68:75–79CrossRefGoogle Scholar
  10. Collins AM et al (2011) Carotenoid distribution in Living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6(9)Google Scholar
  11. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297Google Scholar
  12. Dochow S et al (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11:1484–1490CrossRefGoogle Scholar
  13. Frank CJ, McCreecy RL, Redd DCB (1995) Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 67:777–783CrossRefGoogle Scholar
  14. Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy a powerful tool for the rapid identification of microbial cells at the single cell level. Cytometry A 75(2):104–13CrossRefGoogle Scholar
  15. Huang Z, McWilliams A, Lui M, McLean DI, Lam S, Zeng H (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107:1047–1052CrossRefGoogle Scholar
  16. Ji H-F (2010) Insight into the strong antioxidant activity of Deinoxanthin, a unique carotenoid in Deinococcus radiodurans. Int J Mol Sci 11:4506–4510CrossRefGoogle Scholar
  17. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764CrossRefGoogle Scholar
  18. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728CrossRefGoogle Scholar
  19. Jehlička J, Edwards HG, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80:3286–3295CrossRefGoogle Scholar
  20. Kim HY, Park HM, Lee CH (2012) Mass spectrometry-based chemotaxonomic classification of Penicillium species (P. echinulatum, P. expansum, P. solitum, and P. oxalicum) and its correlation with antioxidant activity. J Microbiol Methods 90:327–335CrossRefGoogle Scholar
  21. Kim M, Oh HC, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefGoogle Scholar
  22. Klassen JL, Foght JM (2008) Differences in carotenoid composition among Hymenobacter and related strains support a tree like model of carotenoid evolution. Appl Environ Microbiol 74:2016–2024CrossRefGoogle Scholar
  23. Kloß S et al (2013) Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem 85:9610–9616Google Scholar
  24. Kolijenovic S, Scut TB, Vincent A, Kros JM, Puppels GJ (2005) Detection of meningioma in dura mater by Raman spectroscopy. Anal Chem 77(24):7958–7965CrossRefGoogle Scholar
  25. Krafft C, Neudert L, Simat T, Salzer R (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A 61:1529–1535CrossRefGoogle Scholar
  26. Kusić D, Kampe B, Rösch P, Popp J (2014) Identification of water pathogens by Raman microspectroscopy. Water Res 48:179–189Google Scholar
  27. Liaaen Jensen S, Andrewes AG (1972) Microbial carotenoids. Annu Rev Microbiol 26:225–248CrossRefGoogle Scholar
  28. Maquelin K et al (2009) Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumonia. Microbiol Sgm 155:2068–2077CrossRefGoogle Scholar
  29. Meisel S, Stöckel S, Rösch P, Popp J (2014) Identification of meat associated pathogens via Raman microspectroscopy. Food Microbiol 38:36–43CrossRefGoogle Scholar
  30. Mignard S, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods 67:574–581CrossRefGoogle Scholar
  31. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541CrossRefGoogle Scholar
  32. Naumann D (1998) Infrared and NIR Raman spectroscopy in medical microbiology. Proc SPIE 3257:245–257CrossRefGoogle Scholar
  33. Netzer R et al (2010) Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus :heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclises. J Bacteriol 192(21):5688–99CrossRefGoogle Scholar
  34. Notingher I, Green C, Dyer C (2004) Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. J R Soc Interface 1:79–90CrossRefGoogle Scholar
  35. R Development core team (2008) R: a language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  36. Reddy GSN et al (2003) Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187CrossRefGoogle Scholar
  37. Rinke C et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437CrossRefGoogle Scholar
  38. Rösch P et al (2005) Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol 71:1626–1637CrossRefGoogle Scholar
  39. Scholtes-Timmerman M, Willemse-Erix H, Schut TB, van Belkum A, Puppels G, Maquelin K (2009) A novel approach to correct variations in Raman spectra due to photo-bleachable cellular components. Analyst 134:387–393CrossRefGoogle Scholar
  40. Sigurdsson S, Philipsen PA, Hansen LK, Laesen L, Gniadecka M, Wulf HC (2004) Detection of skin cancer by classification of Raman spectra. IEEE Trans Biomed Eng 51(10):1784–93CrossRefGoogle Scholar
  41. Silge A, Schmacher W, Rösch P, da Costa Filho PA, Gerard C, Popp J (2014) Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level. Syst Appl Microbiol 37:360–367Google Scholar
  42. Silveira L Jr et al (2002) Correlation between near infrared Raman spectroscopy and the histopathological analysis of atheroscelerosis in human coronary arteries. Lasers Surg Med 30(4):290–7CrossRefGoogle Scholar
  43. Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:16Google Scholar
  44. Stöckel S, Meisel S, Elschner M, Melzer F, Rösch P and Popp J (2014) Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff. Anal Bioanal Chem:1-10Google Scholar
  45. Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157CrossRefGoogle Scholar
  46. Van Der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefGoogle Scholar
  47. Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484CrossRefGoogle Scholar
  48. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. MMBR 71:495–548CrossRefGoogle Scholar
  49. Walter A, Schumacher W, Bocklitz T, Reinicke M, Rösch P, Kothe E, Popp J (2011) From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy. Appl Spectrosc 65:1116–1125CrossRefGoogle Scholar
  50. Walter A et al (2010) Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst 135:908–917CrossRefGoogle Scholar
  51. Withnall R, Chowdhry BZ, Silver J, Edwards HG, de Oliveira LF (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212CrossRefGoogle Scholar
  52. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583CrossRefGoogle Scholar
  53. Xing YL, Bao JW, Cheng YJ, Shuang JL (2007) Micrococcus flavus sp. nov. isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69CrossRefGoogle Scholar
  54. Zhao GZ et al (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vinay Kumar
    • 1
    • 3
  • Bernd Kampe
    • 1
    • 3
  • Petra Rösch
    • 1
    • 3
  • Jürgen Popp
    • 1
    • 2
    • 3
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.Leibniz Institute of Photonic TechnologyJenaGermany
  3. 3.InfectoGnostics, Forschungscampus JenaJenaGermany

Personalised recommendations