Environmental Science and Pollution Research

, Volume 22, Issue 17, pp 13212–13224 | Cite as

Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment

  • V. Nogueira
  • I. Lopes
  • T. A. P. Rocha-Santos
  • M. G. Rasteiro
  • N. Abrantes
  • F. Gonçalves
  • A. M. V. M. Soares
  • A. C. Duarte
  • R. Pereira
Research Article

Abstract

The rapid development of nanotechnology and the increasing use of nanomaterials (NMs) raise concern about their fate and potential effects in the environment, especially for those that could be used for remediation purposes and that will be intentionally released to the environment. Despite the remarkable emerging literature addressing the biological effects of NMs to aquatic organisms, the existing information is still scarce and contradictory. Therefore, aimed at selecting NMs for the treatment of organic and inorganic effluents, we assessed the potential toxicity of NiO (100 and 10–20 nm), Fe2O3 (≈85 × 425 nm), and TiO2 (<25 nm), to a battery of aquatic organisms: Vibrio fischeri, Raphidocelis subcapitata, Lemna minor, Daphnia magna, Brachionus plicatilis, and Artemia salina. Also a mutagenic test was performed with two Salmonella typhimurium strains. Suspensions of each NM, prepared with the different test media, were characterized by dynamic light scattering (DLS) and eletrophoretic light scattering (ELS). For the assays with marine species, no toxicity was observed for all the compounds. In opposite, statistically significant effects were produced on all freshwater species, being D. magna the most sensitive organism. Based on the results of this study, the tested NMs can be classified in a decreasing order of toxicity NiO (100 nm) > NiO (10–20 nm) > TiO2 (<25 nm) > Fe2O3, allowing to infer that apparently Fe2O3 NMs seems to be the one with less risks for receiving aquatic systems.

Keywords

Ecotoxicity Aquatic organisms Nanomaterials Sublethal and lethal effects Wastewater treatment 

References

  1. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Chic Ill) 56:300–306. doi:10.1093/occmed/kql051 CrossRefGoogle Scholar
  2. ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. ASTM (American Society for Testing and Materials), PhiladelphiaGoogle Scholar
  3. Ates M, Daniels J, Arslan Z, Farah I (2013) Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess 185:3339–3348. doi:10.1007/s10661-012-2794-7 CrossRefGoogle Scholar
  4. Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to escherichia coli, bacillus subtilis, and streptococcus aureus. Sci Total Environ 409:1603–1608. doi:10.1016/j.scitotenv.2011.01.014 CrossRefGoogle Scholar
  5. Baird DJ, Soares AMVM, Girling A et al (1989) The long-term maintenance of Daphnia magna Straus for use in ecotoxicity test: problems and prospects. In: Lokke H, Tyle FB-R H (eds) Proceedings of the first European conference on ecotoxicology. Lyngby, Denmark, pp 144–148Google Scholar
  6. Borm P, Klaessig FC, Landry TD et al (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32. doi:10.1093/toxsci/kfj084 CrossRefGoogle Scholar
  7. Briat J-F, Ravet K, Arnaud N et al (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–22. doi:10.1093/aob/mcp128 CrossRefGoogle Scholar
  8. Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803. doi:10.1104/pp. 85.3.801 CrossRefGoogle Scholar
  9. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  10. Dabrunz A, Duester L, Prasse C et al (2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in daphnia magna. PLoS One 6, e20112. doi:10.1371/journal.pone.0020112 CrossRefGoogle Scholar
  11. Doak SH, Manshian B, Jenkins GJS, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745:104–11. doi:10.1016/j.mrgentox.2011.09.013 CrossRefGoogle Scholar
  12. Drost W, Matzke M, Backhaus T (2007) Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 67:36–43. doi:10.1016/j.chemosphere.2006.10.018 CrossRefGoogle Scholar
  13. Dumon JC, Ernst WHO (1988) Titanium in plants. J Plant Physiol 133:203–209. doi:10.1016/S0176-1617(88)80138-X CrossRefGoogle Scholar
  14. Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR—1998–2001, pp 76Google Scholar
  15. Environmental A (1998) Microtox omnio manual. Carlsbad, CA, USAGoogle Scholar
  16. European Community (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ of the European Communities, L 327, Luxembourg, 2000Google Scholar
  17. Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95. doi:10.1007/s00216-008-2458-1 CrossRefGoogle Scholar
  18. Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563. doi:10.1016/j.scitotenv.2010.03.036 CrossRefGoogle Scholar
  19. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  20. Fouqueray M, Dufils B, Vollat B et al (2012) Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environ Pollut 163:55–61. doi:10.1016/j.envpol.2011.11.035 CrossRefGoogle Scholar
  21. García A, Espinosa R, Delgado L et al (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141. doi:10.1016/j.desal.2010.10.052 CrossRefGoogle Scholar
  22. Geis S, Fleming K, Korthals E et al (2000) Modifications to the algal growth inhibition test for use as a regulatory assay. Environ Toxicol Chem 19:36–41CrossRefGoogle Scholar
  23. Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316–321. doi:10.1007/bf00347591 CrossRefGoogle Scholar
  24. Gong N, Shao K, Feng W et al (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516. doi:10.1016/j.chemosphere.2010.12.059 CrossRefGoogle Scholar
  25. Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978. doi:10.1897/08-002.1 CrossRefGoogle Scholar
  26. Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO2 in wastewater. Chem Eng J 119:55–59. doi:10.1016/j.cej.2006.01.017 CrossRefGoogle Scholar
  27. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657. doi:10.1007/s11434-011-4476-1 CrossRefGoogle Scholar
  28. Han ZX, Zhang M (2012) Biotoxicity effects of NiO-nanoparticles on Chlorella sp. In Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2012 International Conference on pp 174–177, IEEEGoogle Scholar
  29. Hartmann NB, Von der Kammer F, Hofmann T et al (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197. doi:10.1016/j.tox.2009.08.008 CrossRefGoogle Scholar
  30. Hayat K, Gondal MA, Khaled MM, Ahmed S (2011) Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol–gel method. J Mol Catal A Chem 336:64–71. doi:10.1016/j.molcata.2010.12.011 CrossRefGoogle Scholar
  31. Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274. doi:10.1016/j.jhazmat.2007.01.017 CrossRefGoogle Scholar
  32. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopar Res 11:77–89. doi:10.1007/s11051-008-9446-4
  33. Justino C, Pereira R, Freitas A et al (2012) Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicology 21:615–629. doi:10.1007/s10646-011-0806-y CrossRefGoogle Scholar
  34. Kanu I, Achi OK (2011) Industrial effluents and their impact on water quality of receiving rivers in Nigeria. J Appl Technol Environ Sanit 1:75–86Google Scholar
  35. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–31. doi:10.1289/ehp.0900793 CrossRefGoogle Scholar
  36. Keller AA, Wang H, Zhou D et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi:10.1021/es902987d CrossRefGoogle Scholar
  37. Khairy M, El-Safty SA, Ismael M, Kawarada H (2012) Mesoporous NiO nanomagnets as catalysts and separators of chemical agents. Appl Catal B Environ 127:1–10. doi:10.1016/j.apcatb.2012.07.036 CrossRefGoogle Scholar
  38. Khellaf N, Zerdaoui M (2010) Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation. Ecotoxicology 19:1363–1368. doi:10.1007/s10646-010-0522-z CrossRefGoogle Scholar
  39. Kim E, Kim S-H, Kim H-C et al (2011) Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicol Environ Health Sci 3:1–6. doi:10.1007/s13530-011-0071-8 CrossRefGoogle Scholar
  40. Krysanov E, Pavlov D, Demidova T, Dgebuadze Y (2010) Effect of nanoparticles on aquatic organisms. Biol Bull 37:406–412. doi:10.1134/s1062359010040114 CrossRefGoogle Scholar
  41. Kulacki KJ, Cardinale BJ (2012) Effects of nano-titanium dioxide on freshwater algal population dynamics. PLoS One 7, e47130. doi:10.1371/journal.pone.0047130 CrossRefGoogle Scholar
  42. Li N, Sioutas C, Cho A et al (2002) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460. doi:10.1289/ehp.6000 CrossRefGoogle Scholar
  43. Li A, Yang H, Zhu Y (2011) Photo-catalytic degradation of wastewater from straw pulp and paper mill by Fe2O3/UV/H2O2. In Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011 International Conference on pp 1624–1627, IEEEGoogle Scholar
  44. Li L, Sillanpää M, Tuominen M et al (2013) Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol Environ Saf 88:89–94. doi:10.1016/j.ecoenv.2012.10.024 CrossRefGoogle Scholar
  45. Lopes I, Ribeiro R, Antunes FE et al (2012) Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria vibrio fischeri and salmonella typhimurium. Ecotoxicology 21:637–48. doi:10.1007/s10646-011-0808-9 CrossRefGoogle Scholar
  46. Malvern Instruments (2008) Zetasizer Nano user manual. MAN 0317–4.0. Malvern Instruments Ltd., Malvern, United KingdomGoogle Scholar
  47. Maron DM, Ames BN (1983) Revised methods for the salmonella Mutagenicity test. Mutat Res Mutagen Relat Subj 113:173–215. doi:10.1016/0165-1161(83)90010-9 CrossRefGoogle Scholar
  48. Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684. doi:10.1016/j.envpol.2010.11.027 CrossRefGoogle Scholar
  49. Metzler DM, Erdem A, Tseng YH, Huang CP (2012) Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type. J Nanotechnol 2012:12. doi:10.1155/2012/237284 CrossRefGoogle Scholar
  50. Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: jackknife vs bootstrap techniques. Ecology 67:1156–1166. doi:10.2307/1938671 CrossRefGoogle Scholar
  51. Miller RJ, Bennett S, Keller AA et al (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7, e30321. doi:10.1371/journal.pone.0030321 CrossRefGoogle Scholar
  52. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res Mol Mech Mutagen 455:29–60. doi:10.1016/s0027-5107(00)00064-6 CrossRefGoogle Scholar
  53. Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546. doi:10.1016/j.jhazmat.2010.08.069 CrossRefGoogle Scholar
  54. Nogueira V, Lopes I, Rocha-Santos T et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350. doi:10.1016/j.scitotenv.2012.02.041 CrossRefGoogle Scholar
  55. Organisation for Economic Co-operation and Development (OECD) (1997) Guidelines for testing of chemicals. Test No. 471: Bacteria reverse mutation test. OECD, Paris, France. http://www.oecdilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en
  56. Organisation for Economic Co-operation and Development (OECD) (1998) Guidelines for testing of chemicals. Test No. 211: Daphnia magna reproduction test. OECD, Paris, France. http://www.oecdilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en
  57. Organisation for Economic Co-operation and Development (OECD) (2004) Guidelines for testing of chemicals. Test No. 202: Daphnia sp., acute immobilization test. OECD, Paris, France. http://www.oecdilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en
  58. Organisation for Economic Co-operation and Development (OECD) (2006) Guidelines for testing of chemicals. Test No. 201: Freshwater algae and cyanobacteria, growth inhibition test. OECD, Paris, France. http://www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en
  59. Organisation for Economic Co-operation and Development (OECD) (2006) Guidelines for testing of chemicals. Test No. 221: Lemna sp. growth inhibition test. OECD, Paris, France. http://www.oecdilibrary.org/environment/test-no-221-lemna-sp-growth-inhabition-test_9789264016194-en
  60. Pan X, Redding JE, Wiley PA et al (2010) Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79:113–116. doi:10.1016/j.chemosphere.2009.12.056 CrossRefGoogle Scholar
  61. Pena ME, Korfiatis GP, Patel M et al (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337. doi:10.1016/j.watres.2005.04.006 CrossRefGoogle Scholar
  62. Pereira R, Rocha-Santos TAP, Antunes FE et al (2011) Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. J Hazard Mater 194:345–354. doi:10.1016/j.jhazmat.2011.07.112 CrossRefGoogle Scholar
  63. Petosa AR, Jaisi DP, Quevedo IR et al (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549. doi:10.1021/es100598h CrossRefGoogle Scholar
  64. Pinheiro T, Moita L, Silva L et al (2013) Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. doi:10.1016/j.nimb.2012.12.049, 10–13 Google Scholar
  65. Shan G, Surampalli R, Tyagi R, Zhang T (2009) Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review. Front Environ Sci Eng China 3:249–264. doi:10.1007/s11783-009-0029-0 CrossRefGoogle Scholar
  66. Song Z, Chen L, Hu J, Richards R (2009) NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology 20:275707CrossRefGoogle Scholar
  67. Song G, Gao Y, Wu H et al (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–52. doi:10.1002/etc.1933 CrossRefGoogle Scholar
  68. Szalay B, Tátrai E, Nyírő G et al (2012) Potential toxic effects of iron oxide nanoparticles in vivo and in vitro experiments. J Appl Toxicol 32:446–53. doi:10.1002/jat.1779 CrossRefGoogle Scholar
  69. Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem React Eng 2011:1–31. doi:10.1155/2011/939161 CrossRefGoogle Scholar
  70. Velhal SG, Kulkarni SD, Jaybhaye RG (2012) Novel nanoparticles for water and waste water treatment. Res J Chem Eviron 16:95–103Google Scholar
  71. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12–21. doi:10.1002/smll.200901158
  72. Wang C, Liu H, Sun Z (2012) Heterogeneous photo-Fenton reaction catalyzed by nanosized iron oxides for water treatment. Int J Photoenergy 2012:10. doi:10.1155/2012/801694 Google Scholar
  73. Xu P, Zeng GM, Huang DL et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. doi:10.1016/j.scitotenv.2012.02.023 CrossRefGoogle Scholar
  74. Zar JH (1996) Biostatistical analysis. 3rd edn. Prentice- Hall, New York, p 662Google Scholar
  75. Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in daphnia magna. Chemosphere 78:209–215. doi:10.1016/j.chemosphere.2009.11.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • V. Nogueira
    • 1
    • 2
  • I. Lopes
    • 1
    • 2
  • T. A. P. Rocha-Santos
    • 1
    • 3
  • M. G. Rasteiro
    • 4
  • N. Abrantes
    • 1
    • 5
  • F. Gonçalves
    • 1
    • 2
  • A. M. V. M. Soares
    • 1
    • 2
  • A. C. Duarte
    • 1
    • 3
  • R. Pereira
    • 6
    • 7
  1. 1.CESAM (Centre for Environmental and Marine Studies)University of AveiroAveiroPortugal
  2. 2.Department of BiologyUniversity of Aveiro, Campus Universitário de SantiagoAveiroPortugal
  3. 3.Department of ChemistryUniversity of Aveiro, Campus Universitário de SantiagoAveiroPortugal
  4. 4.CIEPQPF - Department of Chemical Engineering, Faculty of Science and Technology, Polo IIUniversity of CoimbraCoimbraPortugal
  5. 5.Department of Environment and PlanningUniversity of Aveiro, Campus Universitário de SantiagoAveiroPortugal
  6. 6.Department of Biology, Faculty of ScienceUniversity of PortoPortoPortugal
  7. 7.Research (CIIMAR/CIMAR)University of PortoPortoPortugal

Personalised recommendations