Environmental Science and Pollution Research

, Volume 23, Issue 5, pp 4138–4148 | Cite as

Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides

  • Sana Romdhane
  • Marion Devers-Lamrani
  • Fabrice Martin-Laurent
  • Christophe Calvayrac
  • Emilie Rocaboy-Faquet
  • David Riboul
  • Jean-François Cooper
  • Lise Barthelmebs
Research Article

Abstract

In this study, a bacterial strain able to use sulcotrione, a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity, suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrade mesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione. Mesotrione degradation pathway leads to the accumulation of 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4 methylsulfonylbenzoic acid (AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones.

Keywords

β-Triketone Sulcotrione Mesotrione Biodegradation Bradyrhizobium sp. SR1 

Supplementary material

11356_2015_4544_MOESM1_ESM.pptx (79 kb)
Supplementary data Fig. 1Degradation curves of triketone herbicides by Bradyrhizobium sp. SR1 in resting cell experiments. a Degradation of sulcotrione at 35 mg L−1 (106 μM) and appearance of CMBA expressed in μM. Transitory accumulation of hydroxy-sulcotrione in the medium is represented in arbitrary unit. b Degradation of mesotrione at 35 mg L−1 (103 μM) and accumulation of MNBA and AMBA in the medium. Standard deviations are indicated (n = 3). (PPTX 78 kb)
11356_2015_4544_MOESM2_ESM.pptx (157 kb)
Supplementary data Fig. 2Proposed scheme for mesotrione metabolic pathway of Bradyrhizobium sp. SR1 and Bacillus sp. 3B6. SR1 (1) Mesotrione is transformed into MNBA and AMBA within two different pathways. SR1 (2) Mesotrione is first transformed into MNBA, which is then transformed into AMBA. Dashed arrows indicate hypothetical degradation pathway. 3B6 (1) Major pathway of mesotrione degradation. 3B6 (2) Minor pathway of mesotrione degradation from Durand et al. 2010. (PPTX 157 kb)

References

  1. Alferness P, Wiebe L (2002) Determination of mesotrione residues and metabolites in crops, soil, and water by liquid chromatography with fluorescence detection. J Agric Food Chem 50(14):3926–3934CrossRefGoogle Scholar
  2. Anderson JPE (1984) Herbicide degradation in soil—influence of microbial biomass. Soil Biol Biochem 16(5):483–489CrossRefGoogle Scholar
  3. Arbeli Z, Fuentes CL (2007) Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot 26(12):1733–1746CrossRefGoogle Scholar
  4. Assinder SJ, Williams PA (1990) The TOL plamids—determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69CrossRefGoogle Scholar
  5. Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot J-F, Mallet C, Bohatier J (2009) Isolation and characterization of mesotrione-degrading Bacillus sp from soil. Environ Pollut 157(4):1195–1201CrossRefGoogle Scholar
  6. Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch Environ Contam Toxicol 55(4):576–583CrossRefGoogle Scholar
  7. Calvayrac C, Martin-Laurent F, Faveaux A, Picault N, Panaud O, Coste C-M, Chaabane H, Cooper J-F (2012) Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. Pest Manag Sci 68(3):340–347CrossRefGoogle Scholar
  8. Calvayrac C, Romdhane S, Barthelmebs L, Rocaboy E, Cooper J-F, Bertrand C (2014) Growth abilities and phenotype stability of a sulcotrione-degrading Pseudomonas sp. isolated from soil. Int Biodeterior Biodegrad 91:104–110CrossRefGoogle Scholar
  9. Chaabane H, Cooper JF, Azouzi L, Coste CM (2005) Influence of soil properties on the adsorption–desorption of sulcotrione and its hydrolysis metabolites on various soils. J Agric Food Chem 53(10):4091–4095CrossRefGoogle Scholar
  10. Chaabane H, Vulliet E, Calvayrac C, Coste CM, Cooper JF (2008) Behaviour of sulcotrione and mesotrione in two soils. Pest Manag Sci 64(1):86–93CrossRefGoogle Scholar
  11. Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose–effect microcosm approach. Soil Biol Biochem 42(2):193–202CrossRefGoogle Scholar
  12. Dayan FE, Duke SO, Sauldubois A, Singh N, McCurdy C, Cantrell C (2007) p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for beta-triketones from Leptospermum scoparium. Phytochemistry 68(14):2004–2014CrossRefGoogle Scholar
  13. Devers M, El Azhari N, Kolic N-U, Martin-Laurent F (2007) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273(1):78–86CrossRefGoogle Scholar
  14. Durand S, Amato P, Sancelme M, Delort AM, Combourieu B, Besse-Hogan P (2006) First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione. Lett Appl Microbiol 43(2):222–228CrossRefGoogle Scholar
  15. Durand S, Sancelme M, Besse-Hoggan P, Combourieu B (2010) Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling. Chemosphere 81(3):372–380CrossRefGoogle Scholar
  16. Dyson JS, Beulke S, Brown CD, Lane MCG (2002) Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications. J Environ Qual 31(2):613–618CrossRefGoogle Scholar
  17. Finan TM, Kunkel B, Devos GF, Signer ER (1986) 2nd symbiotic mehaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167(1):66–72Google Scholar
  18. Goujon E, Sta C, Trivella A, Goupil P, Richard C, Ledoigt G (2014) Genotoxicity of sulcotrione pesticide and photoproducts on Allium cepa root meristem. Pestic Biochem Physiol 113:47–54CrossRefGoogle Scholar
  19. Gürtler V, Stanisich V (1996) New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiol 142(1):3–16Google Scholar
  20. Gu T, Zhou C, Sorensen SR, Zhang J, He J, Yu P, Yan X, Li S (2013) The novel bacterial N-demethylase PdmAB is responsible for the initial step of N, N-dimethyl-substituted phenylurea herbicide degradation. Appl Environ Microbiol 79(24):7846–7856CrossRefGoogle Scholar
  21. Huong NL, Itoh K, Suyama K (2007) Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils. Microbes Environ 22(3):243–256CrossRefGoogle Scholar
  22. Hussain S, Arshad M, Springael D, Sørensen SR, Bending GD, Devers-Lamrani M, Maqboola Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2014.1001141
  23. Joly P, Bonnemoy F, Charvy J-C, Bohatier J, Mallet C (2013) Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere 93(10):2444–2450CrossRefGoogle Scholar
  24. Jovic M, Manojlovic D, Stankovic D, Dojcinovic B, Obradovic B, Gasic U, Roglic G (2013) Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes. J Hazard Mater 260:1092–1099CrossRefGoogle Scholar
  25. Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63(6):2266–2272Google Scholar
  26. Karns JS, Mulbry WW, Nelson JO, Kearney PC (1986) Metabolism of carbofuran by a pure bacterial culture. Pestic Biochem Physiol 25(2):211–217CrossRefGoogle Scholar
  27. Karpouzas DG, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol Ecol 53(3):369–378CrossRefGoogle Scholar
  28. Khurana JL, Jackson CJ, Scott C, Pandey G, Horne I, Russell RJ, Herlt A, Easton CJ, Oakeshott JG (2009) Characterization of the phenylurea hydrolases A and B: founding members of a novel amidohydrolase subgroup. Biochem J 418:431–441CrossRefGoogle Scholar
  29. Lee DL, Prisbylla MP, Cromartie TH, Dagarin DP, Howard SW, Provan WM, Ellis MK, Fraser T, Mutter LC (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci 45(5):601–609Google Scholar
  30. Ma R, Kaundun SS, Tranel PJ, Riggins CW, McGinness DL, Hager AG, Hawkes T, McIndoe E, Riechers DE (2013) Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. Plant Physiol 163(1):363–377CrossRefGoogle Scholar
  31. Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA, Abourashed EA, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60(3):281–288CrossRefGoogle Scholar
  32. Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57(2):120–128CrossRefGoogle Scholar
  33. Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AAF, Demiate IM, Pileggi SAV, Azevedo RA, Sadowsky MJ, Pileggi M (2014) Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-alpha. PLoS ONE 9(6). doi:10.1371/journal.pone.0099960
  34. Ozawa T, Yoshida R, Wakashiro Y, Hase H (2004) Improvement of simazine degradation by inoculation of corn and soybean plants with rhizobacteria. Soil Sci Plant Nutr 50(8):1295–1299CrossRefGoogle Scholar
  35. Perriere G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78(5):364–369CrossRefGoogle Scholar
  36. Pileggi M, Veiga Pileggi SA, Olchanheski LR, Garbugio da Silva PA, Gonzalez AMM, Koskinen WC, Barber B, Sadowsky MJ (2012) Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. Chemosphere 86(11):1127–1132CrossRefGoogle Scholar
  37. Rocaboy-Faquet E, Noguer T, Romdhane S, Bertrand C, Dayan FE, Barthelmebs L (2014) Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Appl Microbiol Biotechnol 98(16):7243–7252CrossRefGoogle Scholar
  38. Rouchaud J, Neus O, Bulcke R, Cools K, Eelen H (1998) Sulcotrione soil metabolism in summer corn crops. Bull Environ Contam Toxicol 61(5):669–676CrossRefGoogle Scholar
  39. Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2-3):211–222CrossRefGoogle Scholar
  40. Satsuma K, Hayashi O, Sato K, Ohyama K, Maki S, Hashimura M, Kato Y (2000) Isolation of pentoxazone-transforming microorganisms from soil: their characteristics and metabolites. J Pestic Sci 25(4):357–364CrossRefGoogle Scholar
  41. Satsuma K, Masuda M, Sato K (2013) A role of Bradyrhizobium elkanii and closely related strains in the degradation of methoxychlor in soil and surface water environments. Biosci Biotechnol Biochem 77(11):2222–2227CrossRefGoogle Scholar
  42. Schulz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318(2):162–166CrossRefGoogle Scholar
  43. Shaner DL (2004) Herbicide safety relative to common targets in plants and mammals. Pest Manag Sci 60(1):17–24CrossRefGoogle Scholar
  44. Siehl DL, Tao Y, Albert H, Dong Y, Heckert M, Madrigal A, Lincoln-Cabatu B, Lu J, Fenwick T, Bermudez E, Sandoval M, Horn C, Green JM, Hale T, Pagano P, Clark J, Udranszky IA, Rizzo N, Bourett T, Howard RJ, Johnson DH, Vogt M, Akinsola G, Castle LA (2014) Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol 166(3):1162–1176CrossRefGoogle Scholar
  45. Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68(12):5973–5980CrossRefGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. NAR 25(24):4876–4882CrossRefGoogle Scholar
  47. Topp E (2003) Bacteria in agricultural soils: diversity, role and future perspectives. Can J Soil Sci 83(3):303–309CrossRefGoogle Scholar
  48. Udikovic-Kolic N, Scott C, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96(5):1175–1189CrossRefGoogle Scholar
  49. Van der Meer JR, Devos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56(4):677–694Google Scholar
  50. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. International biological programme handbook No. 15, Blackwell Science Publications. Oxford, EnglandGoogle Scholar
  51. Walker A, Welch SJ (1991) Enhanced degradation of some soil-applied herbicides. Weed Res 31(1):49–57CrossRefGoogle Scholar
  52. Wu N, Jin Y, Jin F, Tan Y, Tao H, Zheng M, Chen R, Liu K, Gao M (2011) Effects of sulcotrione 2-(2-chloro-4-mesylbenzoyl)-cyclohexane-1,3-dione on enzymes involved in tyrosine catabolism and the extent of the resulting tyrosinemia and its relationship with corneal lesions in rats. Pestic Biochem Physiol 99(2):162–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sana Romdhane
    • 1
    • 2
    • 3
  • Marion Devers-Lamrani
    • 3
  • Fabrice Martin-Laurent
    • 3
  • Christophe Calvayrac
    • 2
  • Emilie Rocaboy-Faquet
    • 1
  • David Riboul
    • 4
    • 5
  • Jean-François Cooper
    • 2
  • Lise Barthelmebs
    • 1
  1. 1.Biocapteurs Analyses Environnement (BAE)University of Perpignan Via DomitiaPerpignanFrance
  2. 2.Laboratoire de Chimie des Biomolécules et de l’Environnement–CRIOBE–USR 3278 CNRS EPHEUniversity of Perpignan Via DomitiaPerpignanFrance
  3. 3.INRA, UMR 1347 Agroécologie, Pole EcoldurDijon CedexFrance
  4. 4.INPT, ENSIACETUniversité de ToulouseToulouseFrance
  5. 5.Laboratoire de Génie Chimique (LGC UMR 5503)CNRSToulouseFrance

Personalised recommendations