Environmental Science and Pollution Research

, Volume 22, Issue 17, pp 13137–13152 | Cite as

Characterization of VOC sources in an urban area based on PTR-MS measurements and receptor modelling

  • A. StojićEmail author
  • S. Stanišić Stojić
  • A. Šoštarić
  • L. Ilić
  • Z. Mijić
  • S. Rajšić
Research Article


In this study, the concentrations of volatile organic compounds were measured by the use of proton transfer reaction mass spectrometry, together with NO x , NO, NO2, SO2, CO and PM10 and meteorological parameters in an urban area of Belgrade during winter 2014. The multivariate receptor model US EPA Unmix was applied to the obtained dataset resolving six source profiles, which can be attributed to traffic-related emissions, gasoline evaporation/oil refineries, petrochemical industry/biogenic emissions, aged plumes, solid-fuel burning and local laboratories. Besides the vehicle exhaust, accounting for 27.6 % of the total mixing ratios, industrial emissions, which are present in three out of six resolved profiles, exert a significant impact on air quality in the urban area. The major contribution of regional and long-range transport was determined for source profiles associated with petrochemical industry/biogenic emissions (40 %) and gasoline evaporation/oil refineries (29 %) using trajectory sector analysis. The concentration-weighted trajectory model was applied with the aim of resolving the spatial distribution of potential distant sources, and the results indicated that emission sources from neighbouring countries, as well as from Slovakia, Greece, Poland and Scandinavian countries, significantly contribute to the observed concentrations.


VOC PTR-MS Source apportionment Unmix CWT TSA 



This paper was realized as part of projects no. III43007 and no. III41011, which were financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011–2014. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model used in this publication, as well as the Openair Project.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alghamdi MA, Khoder M, Abdelmaksoud AS, Harrison RM, Hussein T et al (2014) Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual Atmos Health. doi: 10.1007/s11869-014-0263-x Google Scholar
  2. Allan JD, Alfarra MR, Bower KN, Coe H, Jayne JT et al (2006) Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an aerodyne aerosol mass spectrometer. Atmos Chem Phys 6:315–327. doi: 10.5194/acp-6-315-2006 CrossRefGoogle Scholar
  3. Anderson LG, Lanning JA, Wolfe P (1994) Acetone in the urban atmosphere: a study in Denver, Colorado. Israel J Chem 34:341–353. doi: 10.1002/ijch.199400038 CrossRefGoogle Scholar
  4. Barletta B, Meinardi S, Sherwood RF, Chan CY, Wang X, Zou S et al (2005) Volatile organic compounds in 43 Chinese cities. Atmos Environ 39:5979–5990. doi: 10.1016/j.atmosenv.2005.06.029 CrossRefGoogle Scholar
  5. Bentayeb M, Helmer C, Raherison C, Dartigues JF, Tessier JF, Annesi-Maesano I (2010) Bronchitis-like symptoms and proximity air pollution in French elderly. Respir Med 104:880–888. doi: 10.1016/j.rmed.2010.01.004 CrossRefGoogle Scholar
  6. Bon DM, Ulbrich IM, de Gouw JA, Warneke C, Kuster WC et al (2011) Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmos Chem Phys 11:2399–2421. doi: 10.5194/acp-11-2399-2011 CrossRefGoogle Scholar
  7. Brown GS, Frankel A, Hafner RH (2007) Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos Environ 41:227–237. doi: 10.1016/j.atmosenv.2006.08.021 CrossRefGoogle Scholar
  8. Cai C, Geng F, Tie X, Yu Q, An J (2010) Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos Environ 44:5005–5014. doi: 10.1016/j.atmosenv.2010.07.059 CrossRefGoogle Scholar
  9. Cakmak S, Dales RE, Coates F (2012) Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol 129:228–231. doi: 10.1016/j.jaci.2011.09.025 CrossRefGoogle Scholar
  10. Carslaw DC, Beevers SD (2013) Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ Model Softw 40:325–329. doi: 10.1016/j.envsoft.2012.09.005 CrossRefGoogle Scholar
  11. Carslaw DC, Ropkins K (2012) Openair—an R package for air quality data analysis. Environ Model Softw 27:52–61. doi: 10.1016/j.envsoft.2011.09.008 CrossRefGoogle Scholar
  12. de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton‐transfer‐reaction mass spectrometry. Mass Spectrom Rev 26:223–257. doi: 10.1002/mas.20119 CrossRefGoogle Scholar
  13. Draxler RR, Rolph GD (2014) HYSPLIT (HYbrid single-particle lagrangian integrated trajectory) model access via NOAA ARL READY. Accessed 26 July 2014
  14. Environmental quality report for Belgrade area, 2012 - Kvalitet životne sredine grada Beograda u 2012. godini (2012) Sekretarijat za zaštitu životne sredine, Beograd, Gradski zavod za javno zdravlje, Beograd, Regionalni centar za životnu sredinu za Centralnu i Istočnu Evropu (REC), available at (in Serbian)EPA (2007) EPA Unmix 6.0 Fundamentals & User Guide EPA/600/R-07/089 U.S. Environmental Protection Agency. Accessed 21 April 2014
  15. Fu X, Wang S, Zhao B, Xing J, Cheng Z, Liu H, Hao J (2013) Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. Atmos Environ 70:39–50. doi: 10.1016/j.atmosenv.2012.12.034 CrossRefGoogle Scholar
  16. Galbally IE, Hibberd MF, Lawson SJ, Bentley ST, Cheng M, Weeks IA, Gillett RW, Selleck PW (2008) A study of VOCs during winter 2006 at wagerup, western Australia. Report to Alcoa world alumina Australia. CSIRO, AspendaleGoogle Scholar
  17. Guenther A (2002) The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–844. doi: 10.1016/S0045-6535(02)00384-3 CrossRefGoogle Scholar
  18. Henry RC (1997) History and fundamentals of multivariate air quality receptor models. Chemom Intell Lab Sys 37:525–530. doi:35400006147061.0040Google Scholar
  19. Henry RC (2003) Multivariate receptor modeling by N-dimensional edge detection. Chemometr Intell Lab Syst 65:179–189. doi: 10.1016/S0169-7439(02)00108-9 CrossRefGoogle Scholar
  20. Ho KF, Lee SC, Guo H, Tsai WY (2004) Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ 322:155–166. doi: 10.1016/j.scitotenv.2003.10.004 CrossRefGoogle Scholar
  21. Hoerger CC et al (2014) ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO-GAW and EMEP observation networks. Atmos Meas Tech Discuss 7:10423–10485. doi: 10.5194/amtd-7-10423-2014 CrossRefGoogle Scholar
  22. Hsu YK, Holsen TM, Hopke PK (2003) Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos Environ 37:545–562. doi: 10.1016/S1352-2310(02)00886-5 CrossRefGoogle Scholar
  23. IPHB, Accessed 29 August 2014
  24. Jacob DJ, Field BD, Jin EM, Bey I, Li Q, Logan JA et al (2002) Atmospheric budget of acetone. J Geophys Res 107:5–17. doi: 10.1029/2001JD000694 Google Scholar
  25. Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004) Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ 38:4183–4195. doi: 10.1016/j.atmosenv.2004.04.020 CrossRefGoogle Scholar
  26. Jordan C, Fitz E, Hagan T, Sive B, Frinak E et al (2009) Long-term study of VOC measured with PTR-MS at a rural site in New Hampshire with urban influences. Atmos Chem Phys 9:4677–4697. doi: 10.5194/acp-9-4677-2009 CrossRefGoogle Scholar
  27. Kerbachi R, Boughedaoui M, Bounoua L, Keddam M (2006) Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos Environ 40:3995–4003. doi: 10.1016/j.atmosenv.2006.02.033 CrossRefGoogle Scholar
  28. Khoder MI (2007) Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos Environ 41:554–566. doi: 10.1016/j.atmosenv.2006.08.051 CrossRefGoogle Scholar
  29. Kneen MA, Annegarn HJ (1996) Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds. Nucl Inst Methods B 109:209–213. doi: 10.1016/0168-583X(95)00908-6 CrossRefGoogle Scholar
  30. Koppmann R (2008) Volatile organic compounds in the atmosphere. Wiley, LondonGoogle Scholar
  31. Leuchner M, Rappenglück B (2010) VOC source–receptor relationships in Houston during TexAQS-II. Atmos Environ 44:4056–4067. doi: 10.1016/j.atmosenv.2009.02.029 CrossRefGoogle Scholar
  32. Li YP, Elbern H, Lu KD, Friese E, Kiendler-Scharr A, Mentel TF et al (2013) Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008. Atmos Chem Phys 13:6289–6304. doi: 10.5194/acp-13-6289-2013 CrossRefGoogle Scholar
  33. Liakakou E, Vrekoussis M, Bonsang B, Donousis C, Kanakidou M, Mihalopoulos N (2007) Isoprene above the Eastern Mediterranean: seasonal variation and contribution to the oxidation capacity of the atmosphere. Atmos Environ 41(5):1002–1010. doi: 10.1016/j.atmosenv.2006.09.034 CrossRefGoogle Scholar
  34. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241. doi: 10.1016/S0168-1176(97)00281-4 CrossRefGoogle Scholar
  35. Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D (2008a) Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmos Environ 42:6247–6260. doi: 10.1016/j.atmosenv.2008.01.070 CrossRefGoogle Scholar
  36. Liu Y, Shao M, Lu S, Chang CC, Wang JL, Chen G (2008b) Volatile organic compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos Chem Phys 8:1531–1545. doi: 10.5194/acp-8-1531-2008 CrossRefGoogle Scholar
  37. Lough GC, Schauer JJ, Lonneman WA, Allen MK (2005) Summer and winter non-methane hydrocarbon emissions from on-road motor vehicles in the Midwestern United States. J Air Waste Manag Assoc 55:629–646. doi: 10.1080/10473289.2005.10464649 CrossRefGoogle Scholar
  38. Menut L, Flamant C, Pelon J (1999) Evidence of interaction between synoptic and local scales in the surface layer over the Paris area. Bound-Layer Meteorol 93:269–286. doi: 10.1023/A:1002013631786 CrossRefGoogle Scholar
  39. Mijić Z, Kuzmanoski M, Nicolau D, Belegante L (2013) The use of hybrid receptor models and ground-based remote sensing of particulate matter for identification of potential source region, Proceedings from the 4th WeBIOPATR workshop and conference: 52–59Google Scholar
  40. Olson AD, Norris AG, Seila LR, Landis SM, Vette FA (2007) Chemical characterization of volatile organic compounds near the World Trade Center: ambient concentrations and source apportionment. Atmos Environ 41:5673–5683. doi: 10.1016/j.atmosenv.2007.02.047 CrossRefGoogle Scholar
  41. Peel JL, Haeuber R, Garcia V, Russell AG, Neas L (2013) Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry 114:121–134. doi: 10.1007/s10533-012-9782-4 CrossRefGoogle Scholar
  42. Rosado‐Reyes, C. M., & Francisco, J. S. (2007). Atmospheric oxidation pathways of propane and its by‐products: acetone, acetaldehyde, and propionaldehyde. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D14). doi:  10.1029/2006JD007566
  43. Seco R, Peñuelas J, Filella I, Llusia J, Schallhart S, Metzger A et al (2013) Volatile organic compounds in the western Mediterranean basin: urban and rural winter measurements during the DAURE campaign. Atmos Chem Phys 13:4291–4306. doi: 10.5194/acp-13-4291-2013 CrossRefGoogle Scholar
  44. Seidel DJ, Zhang Y, Beljaars A, Golaz JC, Jacobson AR, Medeiros B (2012) Climatology of the planetary boundary layer over the continental United States and Europe. J Geophys Res: Atmos (1984–2012), 117(D17)Google Scholar
  45. Singh HB, O’Hara D, Herlth D, Sachse W, Blake DR, Bradshaw JD et al (1994) Acetone in the atmosphere: distribution, sources, and sinks. J Geophys Res (1984–2012) 99:1805–1819. doi: 10.1038/378050a0 CrossRefGoogle Scholar
  46. Song Y, Dai W, Shao M, Liu Y, Lu S, Kuster W, Goldan P (2008) Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ Pollut 156:174–183. doi: 10.1016/j.envpol.2007.12.014 CrossRefGoogle Scholar
  47. Srivastava PK, Pandit GG, Sharma S, Mohan Rao AM (2000) Volatile organic compounds in indoor environments in Mumbai, India. Sci Total Environ 255:161–168. doi: 10.1016/S0048-9697(00)00465-4 CrossRefGoogle Scholar
  48. Stull RB (1988) An introduction to boundary layer meteorology. Springer, LondonCrossRefGoogle Scholar
  49. Taipale R, Ruuskanen TM, Rinne J, Kajos MK, Hakola H, Pohja T, Kulmala M (2008) Technical note: quantitative long-term measurements of VOC concentrations by PTR-MS–measurement, calibration, and volume mixing ratio calculation methods. Atmos Chem Phys 8:6681–6698. doi: 10.5194/acp-8-6681-2008 CrossRefGoogle Scholar
  50. Tang G, Wang Y, Li X, Ji D, Hsu S, Gao X (2012) Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmos Chem Phys 12:2757–2776. doi: 10.5194/acp-12-2757-2012 CrossRefGoogle Scholar
  51. Team RC (2012) R: a language and environment for statistical computing. Accessed 4 April 2014
  52. Uria-Tellaetxe I, Carslaw DC (2014) Conditional bivariate probability function for source identification. Environ Model Softw 59:1–9. doi: 10.1016/j.envsoft.2014.05.002 CrossRefGoogle Scholar
  53. Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Bound-Layer Meteorol 81:245–269. doi: 10.1007/BF02430331 CrossRefGoogle Scholar
  54. Von Schneidemesser E, Monks PS, Gros V, Gauduin J, Sanchez O (2011) How important is biogenic isoprene in an urban environment? A study in London and Paris. Geophys Res Lett 38 (19). doi:  10.1029/2011GL048647
  55. Wan JM, Lin M, Chan CY, Zhang ZS, Engling G, Wang XM et al (2011) Change of air quality and its impact on atmospheric visibility in central-western Pearl River Delta. Environ Monit Assess 172:339–351. doi: 10.1007/s10661-010-1338-2 CrossRefGoogle Scholar
  56. Zheng J, Garzón JP, Huertas M, Zhang R, Levy M et al (2013) Volatile organic compounds in Tijuana during the Cal-Mex 2010 campaign: measurements and source apportionment. Atmos Environ 70:521–531. doi: 10.1016/j.atmosenv.2012.11.030 CrossRefGoogle Scholar
  57. Zhu L, Huang X, Shi H, Cai X, Song Y (2011) Transport pathways and potential sources of PM10 in Beijing. Atmos Environ 45:594–604. doi: 10.1016/j.atmosenv.2010.10.040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Stojić
    • 1
    Email author
  • S. Stanišić Stojić
    • 2
  • A. Šoštarić
    • 3
  • L. Ilić
    • 1
  • Z. Mijić
    • 1
  • S. Rajšić
    • 1
  1. 1.Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia
  2. 2.Singidunum UniversityBelgradeSerbia
  3. 3.Institute of Public Health BelgradeBelgradeSerbia

Personalised recommendations