Environmental Science and Pollution Research

, Volume 22, Issue 20, pp 15260–15272 | Cite as

Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes

  • Cécile MilitonEmail author
  • Ronan Jézéquel
  • Franck Gilbert
  • Yannick Corsellis
  • Léa Sylvi
  • Cristiana Cravo-Laureau
  • Robert Duran
  • Philippe Cuny
DECAPAGE Project: Hydrocarbon degradation in coastal sediments*


To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria—irrespective of the oxygen regime—followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.


Oxic/anoxic oscillation Aerobic and anaerobic hydrocarbon degradation PAHs Marine sediment Bacterial communities DGGE Dual 16S rRNA/rRNA gene 



This research was funded by the French National Agency (ANR) under the DHYVA (ANR 2006 SEST 09) and DECAPAGE (ANR 2011 CESA 006 01) projects. We thank Patricia Bonin for many fruitful and interesting exchanges.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. Abril G, Commarieu MV, Etcheber H, Deborde J, Deflandre B, Živađinović MK, Chaillou G, Anschutz P (2010) In vitro simulation of oxic/suboxic diagenesis in an estuarine fluid mud subjected to redox oscillations. Estuar Coast Shelf Sci 88:279–291CrossRefGoogle Scholar
  2. Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345CrossRefGoogle Scholar
  3. Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B (2009) Bacterial communities from shoreline environments (Costa da Morte, northwestern Spain) affected by the prestige oil spill. Appl Environ Microbiol 75:3407–3418CrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  5. Alzaga R, Montuori P, Ortiz L, Bayona JM, Albaiges J (2004) Fast solid-phase extraction-gas chromatography–mass spectrometry procedure for oil fingerprinting. Application to the Prestige oil spill. J Chromatogr A 1025:133–138CrossRefGoogle Scholar
  6. Bagi A, Pampanin DM, Lanzén A, Bilstad T, Kommedal R (2014) Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25:111–125CrossRefGoogle Scholar
  7. Bastviken D, Persson L, Odham G, Tranvik L (2004) Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49:109–116CrossRefGoogle Scholar
  8. Blanck H, Dahl B (1996) Pollution-induced community tolerance (PICT) in marine periphyton in a gradient of tri- n-butyltin (TBT) contamination. Aquat Toxicol 35:59–77CrossRefGoogle Scholar
  9. Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097CrossRefGoogle Scholar
  10. Bregnard T, Hoehener P, Haener A, Zeyer J (1996) Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. Environ Toxicol Chem 15:299–307CrossRefGoogle Scholar
  11. Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 41–68Google Scholar
  12. Coates JD, Anderson RT, Woodward JC, Phillips EJP, Lovley DR (1996) Anaerobic hydrocarbon degradation in petroleum contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ Sci Technol 30:2764–2769CrossRefGoogle Scholar
  13. Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593Google Scholar
  14. Cuny P, Cravo-Laureau C, Grossi V, Gilbert F, Militon C (2011) Biodegradation of hydrocarbons in bioturbated marine sediments. In: Koukkou AI (ed) Microbial bioremediation of non-metals: current research. Caster Academic Press, Norfolk, pp 55–92Google Scholar
  15. Delille D, Delille B, Pelletier E (2002) Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microb Ecol 44:118–126CrossRefGoogle Scholar
  16. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643CrossRefGoogle Scholar
  17. Fuch G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefGoogle Scholar
  18. Gilbert F, Stora G, Bertrand JC (1996) In situ bioturbation and fate in an experimental contaminated Mediterranean coastal ecosystem. Chemosphere 33:1449–1458CrossRefGoogle Scholar
  19. Gomariz M, Martínez-García M, Santos F, Rodriguez F, Capella-Gutiérrez S, Gabaldón T, Rosselló-Móra R, Meseguer I, Antón J (2014) From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J. doi: 10.1038/ismej.2014.95 Google Scholar
  20. Grossi V, Massias D, Stora G, Bertrand JC (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48:947–954CrossRefGoogle Scholar
  21. Hayes LA, Nevin KP, Lovley DR (1999) Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30:937–945CrossRefGoogle Scholar
  22. Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefGoogle Scholar
  23. Hylland K (2006) Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Environ Health 69:109–123CrossRefGoogle Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  25. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A et al (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77(22):7962–7974CrossRefGoogle Scholar
  26. Kristensen E (1989) Oxygen and carbon dioxide exchange in the polychaete Nereis virens: influence of ventilation activity and starvation. Mar Biol 101:381–388CrossRefGoogle Scholar
  27. Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol Oceanogr 40:1430–1437CrossRefGoogle Scholar
  28. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959CrossRefGoogle Scholar
  29. Lane DJ (1991) 16/23S rRNA sequencing. In: Stackerbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  30. Latimer JS, Davis WR, Keith DJ (1999) Mobilization of PAHs and PCBs from in-place contaminated marine resuspension events. Estuar Coast Mar Sci 49:577–595CrossRefGoogle Scholar
  31. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18CrossRefGoogle Scholar
  32. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315Google Scholar
  33. LeBlanc L, Gulnick JD, Brownawell BJ, Taylor GT (2006) The influence of sediment resuspension on the degradation of phenanthrene in flow-through microcosms. Mar Environ Res 61:202–223CrossRefGoogle Scholar
  34. Löser C, Seidel H, Zehnsdorf A, Stottmeister U (1998) Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions. Appl Microbiol Biotechnol 49:631–636CrossRefGoogle Scholar
  35. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414CrossRefGoogle Scholar
  36. Miralles G, Grossi V, Acquaviva M, Duran R, Bertrand JC, Cuny P (2007) Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere 68(7):1327–1334CrossRefGoogle Scholar
  37. Mulet M, David Z, Nogales B, Bosch R, Lalucat J, García-Valdés E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 77(3):1076–1085CrossRefGoogle Scholar
  38. Muyzer G, De Waal EC, Uitierlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700Google Scholar
  39. Nikolaou A, Kostopoulou M, Lofrano G, Meric S, Petsas A, Vagi M (2009) Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trends Anal Chem 28:653–664CrossRefGoogle Scholar
  40. Nomura M, Gourse R, Baugham G (1984) Regulation of synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117CrossRefGoogle Scholar
  41. Overholt WA, Green SJ, Marks KP, Venkatraman R, Prakash O, Kostka JE (2013) Draft genome sequences for oil-degrading bacterial strains from beach sands impacted by the Deepwater Horizon oil spill. Genome Announc 1(6):e01015–13CrossRefGoogle Scholar
  42. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag Berlin Heidelberg, Berlin, pp 799–837CrossRefGoogle Scholar
  43. Pischedda L, Poggiale JC, Cuny P, Gilbert F (2008) Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity. Acta Biotheor 56:123–135CrossRefGoogle Scholar
  44. Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag Berlin Heidelberg, Berlin, pp 781–798CrossRefGoogle Scholar
  45. Röling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548CrossRefGoogle Scholar
  46. Röling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70(5):2603–2613CrossRefGoogle Scholar
  47. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  48. Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, Aitken MD (2005) Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71(3):1202–1209CrossRefGoogle Scholar
  49. Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin FX, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS One 8(6):e65347CrossRefGoogle Scholar
  50. Sun M, Lee C, Aller RC (1993) Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim Cosmochim Acta 57:147–157CrossRefGoogle Scholar
  51. Sun MY, Aller RC, Lee C, Wakeham SG (2002) Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments. Geochim Cosmochim Acta 66:2003–2012CrossRefGoogle Scholar
  52. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  53. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  54. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giluliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441CrossRefGoogle Scholar
  55. Vieira PA, Vieira RB, Faria S, Ribeiro EJ, Cardoso VL (2009) Biodegradation of diesel oil and gasoline contaminated effluent employing intermittent aeration. J Hazard Mater 168:1366–1372CrossRefGoogle Scholar
  56. Venosa A, Suidan M, Wrenn B, Strohmeier K, Haines J, Eberhart B, King DHE (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775CrossRefGoogle Scholar
  57. Vitte I, Duran R, Jézéquel R, Caumette P, Cravo-Laureau C (2011) Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge. Environ Sci Pollut Res 18:1022–1032CrossRefGoogle Scholar
  58. Vitte I, Duran R, Hernandez-Raquet G, Mounier J, Jézéquel R, Bellet V, Balaguer P, Caumette P, Cravo-Laureau C (2013) Dynamics of metabolically active bacterial communities involved in PAH and toxicity elimination from oil-contaminated sludge during anoxic/oxic oscillations. Appl Microbiol Biotechnol 97:4199–4211CrossRefGoogle Scholar
  59. Wakeham SG, Canuel EA (2006) Degradation and preservation of organic matter in marine sediments. In: Edited Volkman JK (ed) Handbook of environmental chemistry. Springer Berlin Heidelberg Berlin, Germany, pp 295–321Google Scholar
  60. Wright ES, Safak Yilmaz L, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725CrossRefGoogle Scholar
  61. Zhen Z, Liu H, Wang N, Guo L, Meng J, Ding N, Wu G, Jiang G (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in china. PLoS One 9(10):e108555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cécile Militon
    • 1
    • 6
    Email author
  • Ronan Jézéquel
    • 2
  • Franck Gilbert
    • 3
    • 4
  • Yannick Corsellis
    • 1
  • Léa Sylvi
    • 1
  • Cristiana Cravo-Laureau
    • 5
  • Robert Duran
    • 5
  • Philippe Cuny
    • 1
  1. 1.Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110MarseilleFrance
  2. 2.Centre de Documentation, de Recherche et d’Expérimentations sur les pollutions accidentelles des EauxBrestFrance
  3. 3.Université de Toulouse; INP, UPS; EcoLab (Laboratoire écologie fonctionnelle et environnement)ToulouseFrance
  4. 4.CNRS; EcoLabToulouseFrance
  5. 5.Equipe Environnement et Microbiologie, MELODY groupUniversité de Pau et des Pays de l’Adour, IPREM UMR CNRS 5254Pau CedexFrance
  6. 6.Campus de LuminyMarseille Cedex 09France

Personalised recommendations