Environmental Science and Pollution Research

, Volume 22, Issue 20, pp 15200–15214 | Cite as

The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill

  • Alejandro Acosta-González
  • Sophie-Marie Martirani-von Abercron
  • Ramon Rosselló-Móra
  • Regina-Michaela Wittich
  • Silvia Marqués
DECAPAGE Project: Hydrocarbon degradation in coastal sediments*


The accident of the Prestige oil tanker in 2002 contaminated approximately 900 km of the coastline along the northern Spanish shore, as well as parts of Portugal and France coast, with a mixture of heavy crude oil consisting of polycyclic aromatic hydrocarbons, alkanes, asphaltenes and resins. The capacity of the autochthonous bacterial communities to respond to the oil spill was assessed indirectly by determining the hydrocarbon profiles of weathered oil samples collected along the shore, as well as through isotope ratios of seawater-dissolved CO2, and directly by analyses of denaturing gradient gel electrophoresis fingerprints and 16S rRNA gene libraries. Overall, the results evidenced biodegradation of crude oil components mediated by natural bacterial communities, with a bias towards lighter and less substituted compounds. The changes observed in the Proteobacteria, the most abundant phylum in marine sediments, were related to the metabolic profiles of the sediment. The presence of crude oil in the supratidal and intertidal zones increased the abundance of Alpha- and Gammaproteobacteria, dominated by the groups Sphingomonadaceae, Rhodobacteraceae and Chromatiales, whilst Gamma- and Deltaproteobacteria were more relevant in subtidal zones. The phylum Actinobacteria, and particularly the genus Rhodococcus, was a key player in the microbial response to the spill, especially in the degradation of the alkane fraction. The addition of inorganic fertilizers enhanced total biodegradation rates, suggesting that, in these environments, nutrients were insufficient to support significant growth after the huge increase in carbon sources, as evidenced in other spills. The presence of bacterial communities able to respond to a massive oil input in this area was consistent with the important history of pollution of the region by crude oil.


In situ hydrocarbon biodegradation Marine sediments Alcanivorax Bacterial community response Prestige Anaerobic hydrocarbon degradation Alkanes Aromatics PAHs North Atlantic 



This work was supported by FEDER grants and grants from the Spanish Ministry of Science and Technology (BIO2011-23615), from the Junta de Andalucía (P08-CVI03591), and from the European Union's 7th Framework Programme under Grant Agreement no. 312139.


  1. Abed RMM, Safi NMD, Köster J, de Beer D, El-Nahhal Y, Rullkötter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68:1674–1683CrossRefGoogle Scholar
  2. Acosta-González A (2013) Microbial communities in marine sediments contaminated by the Prestige spill. Ph.D. thesis, University of GranadaGoogle Scholar
  3. Acosta-González A, Rosselló-Móra R, Marqués S (2013a) Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol 15:77–92CrossRefGoogle Scholar
  4. Acosta-González A, Rosselló-Móra R, Marqués S (2013b) Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl Environ Microbiol 79:3667–3676CrossRefGoogle Scholar
  5. Aguilera F, Mendez J, Pasaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. Appl Toxicol 30:291–301Google Scholar
  6. Albaigés J, Morales-Nin B, Vilas F (2006) The Prestige oil spill: a scientific response. Mar Pollut Bull 53:205–7CrossRefGoogle Scholar
  7. Albers PH (2003) Petroleum and individual polycyclic aromatic hydrocarbons. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology. Lewis Publishers, Boca Raton, pp 342–360Google Scholar
  8. Alonso-Gutiérrez J, Costa MM, Figueras A, Albaigés J, Viñas L, Solanas AM, Novoa B (2008) Alcanivorax strain detected among the cultured bacterial community from sediments affected by the Prestige oil spill. Mar Ecol-Prog Ser 362:25–36CrossRefGoogle Scholar
  9. Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B (2009) Bacterial communities from shoreline environments (Costa da morte, northwestern Spain) affected by the Prestige oil spill. Appl Environ Microbiol 75:3407–18CrossRefGoogle Scholar
  10. Alonso-Gutiérrez J, Teramoto M, Yamazoe A, Harayama S, Figueras A, Novoa B (2011) Alkane-degrading properties of Dietzia sp HOB, a key player in the Prestige oil spill biodegradation (NW Spain). J Appl Microbiol 111:800–810CrossRefGoogle Scholar
  11. Álvarez H, Silva R (2013) Metabolic diversity and flexibility for hydrocarbon biodegradation by Rhodococcus. In: Amoroso M, Benimeli C, Cuozzo S (eds) Actinobacteria: application in bioremediation and production of industrial enzymes. CRC Press, London, pp 241–273CrossRefGoogle Scholar
  12. Alzaga R, Montuori P, Ortiz L, Bayona JM, Albaigés J (2004) Fast solid-phase extraction–gas chromatography–mass spectrometry procedure for oil fingerprinting: Application to the Prestige oil spill. J Chromatogr A 1025:133–138CrossRefGoogle Scholar
  13. Andrade ML, Covelo EF, Vega FA, Marcet P (2004) Effect of the Prestige oil spill on salt marsh soils on the coast of Galicia (northwestern Spain). J Environ Qual 33:2103–10CrossRefGoogle Scholar
  14. Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not–the Exxon Valdez experience. Microb Biotech 2:213–21CrossRefGoogle Scholar
  15. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–15CrossRefGoogle Scholar
  16. Barros A, Álvarez D, Velando A (2014) Long-term reproductive impairment in a seabird after the Prestige oil spill. Biol Lett 10:20131041CrossRefGoogle Scholar
  17. Beiras R, Saco-Álvarez L (2006) Toxicity of seawater and sand affected by the Prestige fuel-oil spill using bivalve and sea urchin embryogenesis bioassays. Water Air Soil Pollut 177:457–466CrossRefGoogle Scholar
  18. Bernabeu AM, Fernández-Fernández S, Bouchette F, Rey D, Arcos A, Bayona JM, Albaigés J (2013) Recurrent arrival of oil to Galician coast: the final step of the Prestige deep oil spill. J Hazard Mater 250–251:82–90CrossRefGoogle Scholar
  19. Blanco CG, Prego R, Azpíroz MDG, Fernández-Domínguez I (2006) Characterization of hydrocarbons in sediments from Laxe Ria and their relationship with the Prestige oil spill (NW Iberian Peninsula). Cienc Mar 32:429–439Google Scholar
  20. Bode A, González N, Lorenzo J, Valencia J, Varela MM, Varela M (2006) Enhanced bacterioplankton activity after the 'Prestige' oil spill off Galicia, NW Spain. Aquat Microb Ecol 43:33–41CrossRefGoogle Scholar
  21. Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benyzl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ. Sci. Technol.Google Scholar
  22. Castanedo S, Medina R, Losada IJ, Vidal C, Méndez FJ, Osorio A, Juanes JA, Puente A (2006) The Prestige oil spill in Cantabria (Bay of Biscay). Part I: operational forecasting system for quick response, risk assessment, and protection of natural resources. J Coastal Res 1474-1489Google Scholar
  23. CEDRE (2013) Accidents: classement alphabétique, http://www.cedre.fr/en/spill/alphabetical-classification.php
  24. Chaerun SK, Tazaki K, Asada R, Kogure K (2004) Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environ Int 30:911–22CrossRefGoogle Scholar
  25. Chung WK, King GM (2001) Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl Environ Microbiol 67:5585–5592CrossRefGoogle Scholar
  26. CSIC (2003a) Characterization of the spill and preliminary evolution in the environment. In “CSIC Technical Report No. 01 (in Spanish).” (http://csicprestige.iim.csic.es/)
  27. CSIC (2003b) Heavy metal presence in the shipwreck area of Prestige tanker and metal contents in the emulsioned fuel. In “CSIC Technical Report No. 2 (in Spanish)” (http://csicprestige.iim.csic.es/)
  28. de la Huz R, Lastra M, Junoy J, Castellanos C, Vieitez JM (2005) Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: Preliminary study of the "Prestige" oil spill. Estuar Coast Shelf S 65:19–29CrossRefGoogle Scholar
  29. Debruyn JM, Chewning CS, Sayler GS (2007) Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ Sci Technol 41:5426–32CrossRefGoogle Scholar
  30. Díez S, Sabaté J, Viñas M, Bayona JM, Solanas AM, Albaigés J (2005) The Prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions. Environ Toxicol Chem 24:2203–2217CrossRefGoogle Scholar
  31. Díez S, Jover E, Bayona JM, Albaigés J (2007) Prestige oil spill. III. Fate of a heavy hil in the marine environment. Environ Sci Technol 41:3075–3082CrossRefGoogle Scholar
  32. Dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE 6:e16943CrossRefGoogle Scholar
  33. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico. Environ Sci Technol 47:10860–7CrossRefGoogle Scholar
  34. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–23CrossRefGoogle Scholar
  35. Fernández-Álvarez P, Vila J, Garrido JM, Grifoll M, Feijoo G, Lema JM (2007) Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige. J Hazard Mater 147:914–22CrossRefGoogle Scholar
  36. Fernández-Fernández S, Bernabeu AM, Bouchette F, Rey D, Vilas F (2011) Beach morphodynamic influence on long-term oil pollution: The Prestige oil spill. J Coastal Res, 890-893Google Scholar
  37. Fowler SJ, Gutierrez-Zamora M-L, Manefield M, Gieg LM (2014) Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol Ecol 89:625–636CrossRefGoogle Scholar
  38. Franco MA, Viñas L, Soriano JA, de Armas D, González JJ, Beiras R, Salas N, Bayona JM, Albaigés J (2006) Spatial distribution and ecotoxicity of petroleum hydrocarbons in sediments from the Galicia continental shelf (NW Spain) after the Prestige oil spill. Mar Pollut Bull 53:260–71CrossRefGoogle Scholar
  39. Gallego JR, González-Rojas E, Peláez AI, Sánchez J, García-Martínez MJ, Ortiz JE, Torres T, Llamas JF (2006) Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Org Geochem 37:1869–1884CrossRefGoogle Scholar
  40. Gallego S, Vila J, Nieto JM, Urdiain M, Rosselló-Móra R, Grifoll M (2010) Breoghania corrubedonensis gen. nov. sp. nov., a novel alphaproteobacterium isolated from a Galician beach (NW Spain) after the Prestige fuel oil spill, and emended description of the family Cohaesibacteraceae and the species Cohaesibacter gelatinilyticus. Syst Appl Microbiol 33:316–21CrossRefGoogle Scholar
  41. Gallego S, Vila J, Tauler M, Nieto JM, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25:543–56CrossRefGoogle Scholar
  42. Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F, Genovese L, Golyshin PN, Giuliano L, Yakimov MM (2014) Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Front Microbiol 5:162Google Scholar
  43. Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M (2012) Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microb Ecol 64:605–616CrossRefGoogle Scholar
  44. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70Google Scholar
  45. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–14CrossRefGoogle Scholar
  46. Hazen TC et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–8CrossRefGoogle Scholar
  47. Heiss-Blanquet S, Benoit Y, Marechaux C, Monot F (2005) Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99:1392–403CrossRefGoogle Scholar
  48. Jiménez N, Viñas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaigés J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585CrossRefGoogle Scholar
  49. Jiménez N, Viñas M, Bayona JM, Albaigés J, Solanas AM (2007) The Prestige oil spill: Bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77:935–45CrossRefGoogle Scholar
  50. Jiménez N, Viñas M, Guiu-Aragonés C, Bayona JM, Albaigés J, Solanas AM (2011) Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Appl Microbiol Biotechnol 91:823–34CrossRefGoogle Scholar
  51. Juanes JA, Puente A, Revilla JA, Álvarez C, García A, Medina R, Castanedo S, Morante L, González S, García-Castrillo G (2007) The Prestige oil spill in Cantabria (Bay of Biscay). Part II. Environmental assessment and monitoring of coastal ecosystems. J Coastal Res 978–992Google Scholar
  52. Junoy J, Castellanos C, Vieitez JM, de la Huz MR, Lastra M (2005) The macroinfauna of the Galician sandy beaches (NW Spain) affected by the Prestige oil-spill. Mar Pollut Bull 50:526–36CrossRefGoogle Scholar
  53. Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3:246–55CrossRefGoogle Scholar
  54. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–7CrossRefGoogle Scholar
  55. Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front Microbiol 5:603Google Scholar
  56. Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–96CrossRefGoogle Scholar
  57. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77:7962–7974CrossRefGoogle Scholar
  58. Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK (2014) Assessment of the Deepwater Horizon oil spill impact on gulf coast microbial communities. Front Microbiol 5:130Google Scholar
  59. Marino-Balsa JC, Pérez P, Estévez-Blanco P, Saco-Álvarez L, Fernández E, Beiras R (2003) Assessment of the toxicity of sediment and seawater polluted by the Prestige fuel spill using bioassays with clams (Venerupis pullastra, Tappes decussatus and Venerupis rhomboideus) and the microalga Skeletonema costatum. Cienc Mar 29:115–122Google Scholar
  60. Martín-Gil J, Ramos-Sánchez MC, Martín-Gil FJ (2004) Shewanella putrefaciens in a fuel-in-water emulsion from the Prestige oil spill. Antonie Van Leeuwenhoek 86:283–5CrossRefGoogle Scholar
  61. Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–53CrossRefGoogle Scholar
  62. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–27Google Scholar
  63. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–75Google Scholar
  64. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosys 8:10CrossRefGoogle Scholar
  65. Medina-Bellver JI, Marín P, Delgado A, Rodríguez-Sánchez A, Reyes E, Ramos JL, Marqués S (2005) Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ Microbiol 7:773–9CrossRefGoogle Scholar
  66. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–75CrossRefGoogle Scholar
  67. Morales-Caselles C, Kalman J, Micaelo C, Ferreira AM, Vale C, Riba I, Delvalls TA (2008) Sediment contamination, bioavailability and toxicity of sediments affected by an acute oil spill: Four years after the sinking of the tanker Prestige (2002). Chemosphere 71:1207–13CrossRefGoogle Scholar
  68. Moreno R, Jover L, Diez C, Sardà-Palomera F, Sanpera C (2013) Ten years after the Prestige oil spill: Seabird trophic ecology as indicator of long-term effects on the coastal marine ecosystem PLoS ONE 8(10):e77360Google Scholar
  69. Mortazavi B, Horel A, Beazley MJ, Sobecky PA (2013) Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates. J Hazard Mater 244–245:537–544CrossRefGoogle Scholar
  70. Mulet M, David Z, Nogales B, Bosch R, Lalucat J, Garcáa-Valdés E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 77:1076–85CrossRefGoogle Scholar
  71. Navas JM, Babín M, Casado S, Fernández C, Tarazona JV (2006) The Prestige oil spill: a laboratory study about the toxicity of the water-soluble fraction of the fuel oil. Mar Environ Res 62(Suppl):S352–5CrossRefGoogle Scholar
  72. Nie Y, Chi C-Q, Fang H, Liang J-L, Lu S-L, Lai G-L, Tang Y-Q, Wu X-L (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4Google Scholar
  73. Penela-Arenaz M, Bellas J, Vázquez E (2009) Effects of the Prestige oil spill on the biota of NW Spain: 5 years of learning. In: Sims DW (Editor), Advances in Marine Biology, Vol 56. Advances in Marine Biology, pp. 365-396Google Scholar
  74. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–6CrossRefGoogle Scholar
  75. Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–9Google Scholar
  76. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20292–7CrossRefGoogle Scholar
  77. Reis I, Almeida CM, Magalhães C, Cochofel J, Guedes P, Basto MC, Bordalo A, Mucha A (2014) Bioremediation potential of microorganisms from a sandy beach affected by a major oil spill. Environ Sci Pollut Res 21:3634–3645CrossRefGoogle Scholar
  78. Röling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–48CrossRefGoogle Scholar
  79. Röling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–13CrossRefGoogle Scholar
  80. Saco-Álvarez L, Bellas J, Nieto O, Bayona JM, Albaigés J, Beiras R (2008) Toxicity and phototoxicity of water-accommodated fraction obtained from Prestige fuel oil and Marine fuel oil evaluated by marine bioassays. Sci Total Environ 394:275–82CrossRefGoogle Scholar
  81. Salas N, Ortíz L, Gilcoto M, Varela M, Bayona JM, Groom S, Álvarez-Salgado XA, Albaigés J (2006) Fingerprinting petroleum hydrocarbons in plankton and surface sediments during the spring and early summer blooms in the Galician coast (NW Spain) after the Prestige oil spill. Mar Environ Res 62:388–413CrossRefGoogle Scholar
  82. Santos-Echeandía J, Prego R, Cobelo-García A (2005) Copper, nickel, and vanadium in the Western Galician Shelf in early spring after the Prestige catastrophe: Is there seawater contamination? Anal Bioanal Chem 382:360–365CrossRefGoogle Scholar
  83. Serrano A, Sánchez F, Preciado I, Parra S, Frutos I (2006) Spatial and temporal changes in benthic communities of the Galician continental shelf after the Prestige oil spill. Mar Pollut Bull 53:315–31CrossRefGoogle Scholar
  84. Stapleton RD, Sayler GS (1998) Assessment of the microbiological potential for the natural attenuation of petroleum hydrocarbons in a shallow aquifer system. Microb Ecol 36:349–361CrossRefGoogle Scholar
  85. Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin F-X, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS ONE 8:e65347CrossRefGoogle Scholar
  86. Suárez-Suárez A (2012): Sulphate‐reducing bacterial diversity in a calcareous sandy sediment of Mallorca and community response to hydrocarbon contamination. Ph.D. thesis., University of Isles BalearesGoogle Scholar
  87. Suárez-Suárez A, López-López A, Tovar-Sánchez A, Yarza P, Orfila A, Terrados J, Arnds J, Marqués S, Niemann H, Schmitt-Kopplin P, Amann R, Rosselló-Mora R (2011) Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment. Environ Microbiol 13:1488–99CrossRefGoogle Scholar
  88. Swannell RP, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–65Google Scholar
  89. Syutsubo K, Kishira H, Harayama S (2001) Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol 3:371–9CrossRefGoogle Scholar
  90. Teira E, Lekunberri I, Gasol JM, Nieto-Cid M, Álvarez-Salgado XA, Figueiras FG (2007) Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environ Microbiol 9:2551–2562CrossRefGoogle Scholar
  91. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170–178CrossRefGoogle Scholar
  92. Varela M, Bode A, Lorenzo J, Álvarez-Ossorio MT, Miranda A, Patrocinio T, Anadon R, Viesca L, Rodríguez N, Valdés L, Cabal J, Urrutia A, García-Soto C, Rodríguez M, Álvarez-Salgado XA, Groom S (2006) The effect of the "Prestige" oil spill on the plankton of the N-NW Spanish coast. Mar Pollut Bull 53:272–86CrossRefGoogle Scholar
  93. Vega FA, Covelo EF, Reigosa MJ, Andrade ML (2009) Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill. J Hazard Mater 166:1020–9CrossRefGoogle Scholar
  94. Vieites DR, Nieto-Roman S, Palanca A, Ferrer X, Vences M (2004) European Atlantic: the hottest oil spill hotspot worldwide. Naturwissenschaften 91:535–8CrossRefGoogle Scholar
  95. Vila J, Nieto JM, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73:349–62Google Scholar
  96. von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552CrossRefGoogle Scholar
  97. Wang YF, Tam NFY (2011) Microbial community dynamics and biodegradation of polycyclic aromatic hydrocarbons in polluted marine sediments in Hong Kong. Mar Pollut Bull 63:424–430CrossRefGoogle Scholar
  98. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–84Google Scholar
  99. Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM (2001) Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–22CrossRefGoogle Scholar
  100. Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9:1035–1046CrossRefGoogle Scholar
  101. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998): Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48 Pt 2, 339-48Google Scholar
  102. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–85CrossRefGoogle Scholar
  103. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–8CrossRefGoogle Scholar
  104. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–66CrossRefGoogle Scholar
  105. Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75CrossRefGoogle Scholar
  106. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–9CrossRefGoogle Scholar
  107. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, Martiny JBH, Sogin M, Boetius A, Ramette A (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6:e24570CrossRefGoogle Scholar
  108. Zock JP, Rodriguez-Trigo G, Pozo-Rodriguez F, Barbera JA (2011) Health effects of oil spills: lessons from the Prestige. J Respir Crit Care Med 184:1094–6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alejandro Acosta-González
    • 1
    • 3
  • Sophie-Marie Martirani-von Abercron
    • 1
  • Ramon Rosselló-Móra
    • 2
  • Regina-Michaela Wittich
    • 1
  • Silvia Marqués
    • 1
  1. 1.Department of Environmental ProtectionConsejo Superior de Investigaciones Científicas, Estación Experimental del ZaidínGranadaSpain
  2. 2.Institut Mediterrani d’Estudis Avançats, IMEDEA, CSIC-UIBEsporlesSpain
  3. 3.Facultad de IngenieríaUniversidad de La SabanaChíaColombia

Personalised recommendations