Environmental Science and Pollution Research

, Volume 23, Issue 3, pp 2058–2080 | Cite as

Toxicokinetics of chiral polychlorinated biphenyls across different species—a review

  • Izabela Kania-Korwel
  • Hans-Joachim LehmlerEmail author
PCBs: Exposures, Effects, Remediation and Regulation with special reference to PCBs in Schools


Nineteen polychlorinated biphenyls (chiral or C-PCBs) exist as two stable rotational isomers (atropisomers) that are non-superimposable mirror images of each other. C-PCBs are released into the environment as racemic (i.e., equal) mixtures of both atropisomers and undergo atropisomeric enrichment due to biological, but not abiotic, processes. In particular, toxicokinetic studies provide important initial insights into atropselective processes involved in the disposition (i.e., absorption, distribution, biotransformation, and excretion) of C-PCBs. The toxicokinetic of C-PCBs is highly congener and species dependent. In particular, at lower trophic levels, abiotic processes play a predominant role in C-PCB toxicokinetics. Biotransformation plays an important role in the elimination of C-PCBs in mammals. The elimination of C-PCB follows the approximate order mammals > birds > amphibians > fish, mostly due to a corresponding decrease in metabolic capacity. A few studies have shown differences in the toxicokinetics of C-PCB atropisomers; however, more work is needed to understand the toxicokinetics of C-PCBs and the underlying biological processes. Such studies will not only contribute to our understanding of the fate of C-PCBs in aquatic and terrestrial food webs but also facilitate our understanding of human exposures to C-PCBs.


Chirality Persistent organic pollutant Pharmacokinetics Enantioselective Invertebrate Vertebrate Fish Bird Mammals Humans Disposition Absorption Metabolism Excretion 


Compliance with ethical standards

This manuscript does not involve research with humans or animals.


The authors would like to acknowledge support through grants from the National Institute for Environmental Health Sciences/National Institutes of Health (ES05605, ES012475, ES013661 and ES017425) where their own work is cited.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2015_4383_MOESM1_ESM.pdf (263 kb)
ESM 1 (PDF 262 kb)


  1. Agency for Toxic Substances and Disease Registry (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  2. Ahlborg UG, Becking GC, Birnbaum LS, Brouwer A, Derks HJGM, Feeley M, Golor G, Hanberg A, Larsen JC, Liem AKD, Safe SH, Schlatter C, Waern F, Younes M, Yrjanheikki E (1994) Toxic equivalency factors for dioxin-like PCBs. Chemosphere 28:1049–1067CrossRefGoogle Scholar
  3. Anezaki K, Nakano T (2014) Concentration levels and congener profiles of polychlorinated biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments. Environ Sci Pollut Res 21:998–1009CrossRefGoogle Scholar
  4. Anezaki K, Nakano T (2015) Unintentional PCB in chlorophenylsilanes as a source of contamination in environmental samples. J Hazard Mater 287:111–117CrossRefGoogle Scholar
  5. Anezaki K, Kannan N, Nakano T (2014) Polychlorinated biphenyl contamination of paints containing polycyclic- and naphthol AS-type pigments. Environ Sci Pollut Res. doi: 10.1007/s11356-014-2985-6
  6. Angell RA, Haffner GD (2010) Polychlorinated biphenyl elimination rates and changes in chemical activity in hibernating amphibians. Environ Toxicol Chem 29:700–707CrossRefGoogle Scholar
  7. Ariyoshi N, Oguri K, Koga N, Yoshimura H, Funae Y (1995) Metabolism of highly persistent PCB congener, 2,4,5,2′,4′,5′-hexachlorobiphenyl, by human CYP2B6. Biochem Biophys Res Commun 212:455–460CrossRefGoogle Scholar
  8. Aronson KJ, Wilson JWL, Hamel M, Diarsvitri W, Fan W, Woolcott C, Heaton JPW, Nickel JC, Macneily A, Morales A (2010) Plasma organochlorine levels and prostate cancer risk. J Expo Sci Environ Epidemiol 20:434–445CrossRefGoogle Scholar
  9. Asher BJ, Wong CS, Rodenburg LA (2007) Chiral source apportionment of polychlorinated biphenyls to the Hudson River estuary atmosphere and food web. Environ Sci Technol 41:6163–6169CrossRefGoogle Scholar
  10. Asher BJ, Ross MS, Wong CS (2012) Tracking chiral polychlorinated biphenyl sources near a hazardous waste incinerator: fresh emissions or weathered revolatilization? Environ Toxicol Chem 31:1453–1460CrossRefGoogle Scholar
  11. Bachour G, Failing K, Georgii S, Elmadfa I, Brunn H (1998) Species and organ dependence of PCB contamination in fish, foxes, roe deer, and humans. Arch Environ Contam Toxicol 35:666–673CrossRefGoogle Scholar
  12. Becker K, Kaus S, Krause C, Lepom P, Schulz C, Seiwert M, Seifert B (1998) German Environmental Survey 1998, vol. III: human biomonitoring. Pollutants in blood and urine of the German populationGoogle Scholar
  13. Bennett ER, Steevens JA, Lotufo GR, Paterson G, Drouillard KG (2011) Novel control and steady-state correction method for standard 28-day bioaccumulation tests using Nereis virens. Environ Toxicol Chem 30:1366–1375CrossRefGoogle Scholar
  14. Birnbaum LS (1983) Distribution and excretion of 2,3,6,2′,3′,6′- and 2,4,5,2′,4′,5′-hexachlorobiphenyl in senescent rats. Toxicol Appl Pharmacol 70:262–272CrossRefGoogle Scholar
  15. Blanch GP, Glausch A, Schurig V (1999) Determination of the enantiomeric ratios of chiral PCB 95 and 149 in human milk samples by multidimensional gas chromatography with ECD and MS(SIM) detection. Eur Food Res Technol 209:294–296CrossRefGoogle Scholar
  16. Bordajandi LR, Abad E, Gonzalez MJ (2008) Occurrence of PCBs, PCDD/Fs, PBDEs and DDTs in Spanish breast milk: enantiomeric fraction of chiral PCBs. Chemosphere 70:567–575CrossRefGoogle Scholar
  17. Borlakoglu JT, Wilkins JPG (1993) Metabolism of di, tri-, tetra-, penta- and hexachlorobiphenyls by hepatic microsomes isolated from control animals and animals treated with Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs). Comp Biochem Physiol C Comp Pharmacol Toxicol 105C:95–106CrossRefGoogle Scholar
  18. Bozcaarmutlu A, Arinc E (2008) Purification of CYP2B-like protein from feral leaping mullet (Liza saliens) liver microsomes and its biocatalytic, molecular, and immunological characterization. J Biochem Mol Toxicol 22:284–298CrossRefGoogle Scholar
  19. Brambilla G, Dellatte E, Fochi I, Iacovella N, Miniero R, di Domenico A (2007) Depletion of selected polychlorinated biphenyl, dibenzodioxin, and dibenzofuran congeners in farmed rainbow trout (Oncorhynchus mykiss): a hint for safer fish farming. Chemosphere 66:1019–1030CrossRefGoogle Scholar
  20. Bräuner EV, Raaschou-Nielsen O, Gaudreau E, LeBlanc A, Tjønneland A, Overvad K, Sørensen M (2010) Predictors of polychlorinated biphenyl boncentrations in adipose tissue in a general Danish population. Environ Sci Technol 45:679–685CrossRefGoogle Scholar
  21. Broding HC, Schettgen T, Göen T, Angerer J, Drexler H (2007) Development and verification of a toxicokinetic model of polychlorinated biphenyl elimination in persons working in a contaminated building. Chemosphere 68:1427–1434CrossRefGoogle Scholar
  22. Brown JF (1994) Determination of PCB metabolic, excretion, and accumulation rates for use as indicators of biological response and relative risk. Environ Sci Technol 28:2295–2305CrossRefGoogle Scholar
  23. Brown J Jr, Lawton RW (1984) Polychlorinated biphenyl (PCB) partitioning between adipose tissue and serum. Bull Environ Contam Toxicol 33:277–280CrossRefGoogle Scholar
  24. Bucheli TD, Brandli RC (2006) Two-dimensional gas chromatography coupled to triple quadrupole mass spectrometry for the unambiguous determination of atropisomeric polychlorinated biphenyls in environmental samples. J Chromatogr A 1110:156–164CrossRefGoogle Scholar
  25. Buckland S, M. N, B, Garrett N, Ellis HK, van Maanen T (2001) Concentrations of selected organochlorines in the serum of the non-occupationally exposed New Zealand population. Organochlorines Programme, Ministry for the Environment. Accessed 24 Mar 2015
  26. Buckman AH, Brown SB, Hoekstra PF, Solomon KR, Fisk AT (2004) Toxicokinetics of three polychlorinated biphenyl technical mixtures in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23:1725–1736CrossRefGoogle Scholar
  27. Buckman AH, Wong CS, Chow EA, Brown SB, Solomon KR, Fisk AT (2006) Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish. Aquat Toxicol 78:176–185CrossRefGoogle Scholar
  28. Buckman AH, Brown SB, Small J, Muir DCG, Parrott J, Solomon KR, Fisk AT (2007) Role of temperature and enzyme induction in the biotransformation of polychlorinated biphenyls and bioformation of hydroxylated polychlorinated biphenyls by rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 41:3856–3863CrossRefGoogle Scholar
  29. Chen PH, Luo ML, Wong CK, Chen CJ (1982) Comparative rates of elimination of some individual polychlorinated biphenyls from the blood of PCB-poisoned patients in Taiwan. Food Chem Toxicol 20:417–425CrossRefGoogle Scholar
  30. Chu S, Covaci A, Schepens P (2003) Levels and chiral signatures of persistent organochlorine pollutants in human tissues from Belgium. Environ Res 93:167–176CrossRefGoogle Scholar
  31. Colles A, Koppen G, Hanot V, Nelen V, Dewolf MC, Noel E, Malisch R, Kotz A, Kypke K, Biot P, Vinkx C, Schoeters G (2008) Fourth WHO-coordinated survey of human milk for persistent organic pollutants (POPs): Belgian results. Chemosphere 73:907–914CrossRefGoogle Scholar
  32. Covaci A, Hura C, Schepens P (2001) Selected persistent organochlorine pollutants in Romania. Sci Total Environ 280:143–152CrossRefGoogle Scholar
  33. Covaci A, Voorspoels S, Roosens L, Jacobs W, Blust R, Neels H (2008) Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in human liver and adipose tissue samples from Belgium. Chemosphere 73:170–175CrossRefGoogle Scholar
  34. Dang VD, Walters DM, Lee CM (2010) Transformation of chiral polychlorinated biphenyls (PCBs) in a stream food web. Environ Sci Technol 44:2836–2841CrossRefGoogle Scholar
  35. Darnerud P, Atuma S, Aune M, Bjerselius R, Glynn A, Grawé KP, Becker W (2006) Dietary intake estimations of organohalogen contaminants (dioxins, PCB, PBDE and chlorinated pesticides, eg DDT) based on Swedish market basket data. Food Chem Toxicol 44:1597–1606CrossRefGoogle Scholar
  36. de Boer J, van der Valk F, Kerkhoff MAT, Hagel P, Brinkman UAT (1994) 8-year study on the elimination of PCBs and other organochlorine compounds from eel (Anguilla anguilla) under natural conditions. Environ Sci Technol 28:2242–2248CrossRefGoogle Scholar
  37. De Geus H, Wester P, de Boer J, Brinkman U (2000) Enantiomer fractions instead of enantiomer ratios. Chemosphere 41:725–727CrossRefGoogle Scholar
  38. DeCaprio AP, Johnson GW, Tarbell AM, Carpenter DO, Chiarenzelli JR, Morse GS, Santiago-Rivera AL, Schymura MJ (2005) Polychlorinated biphenyl (PCB) exposure assessment by multivariate statistical analysis of serum congener profiles in an adult Native American population. Environ Res 98:284–302CrossRefGoogle Scholar
  39. Dewailly E, Mulvad G, Pedersen HS, Ayotte P, Demers A, Weber JP, Hansen JC (1999) Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland. Environ Health Perspect 107:823–828CrossRefGoogle Scholar
  40. Drouillard KG, Norstrom RJ (2000) Dietary absorption efficiencies and toxicokinetics of polychlorinated biphenyls in ring doves following exposure to Aroclor mixtures. Environ Toxicol Chem 19:2707–2714CrossRefGoogle Scholar
  41. Drouillard KG, Norstrom RJ (2003) The influence of diet properties and feeding rates on PCB toxicokinetics in the ring dove. Arch Environ Contam Toxicol 44:97–106CrossRefGoogle Scholar
  42. Drouillard KG, Fernie KJ, Smits JE, Bortolotti GR, Bird DM, Norstrom RJ (2001) Bioaccumulation and toxicokinetics of 42 polychlorinated biphenyl congeners in American kestrels (Falco sparverius). Environ Toxicol Chem 20:2514–2522CrossRefGoogle Scholar
  43. Drouillard KG, Fernie KJ, Letcher RJ, Shutt LJ, Whitehead M, Gebink W, Bird DM (2007) Bioaccumulation and biotransformation of 61 polychlorinated biphenyl and four polybrominated diphenyl ether congeners in juvenile American kestrels (Falco sparverius). Environ Toxicol Chem 26:313–324CrossRefGoogle Scholar
  44. Durou C, Poirier L, Amiard J-C, Budzinski H, Gnassia-Barelli M, Lemenach K, Peluhet L, Mouneyrac C, Romeo M, Amiard-Triquet C (2007) Biomonitoring in a clean and a multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor. Environ Pollut 148:445–458CrossRefGoogle Scholar
  45. Fait A, Grossman E, Self S, Jeffries J, Pellizzari E, Emmett E (1989) Polychlorinated biphenyl congeners in adipose tissue lipid and serum of past and present transformer repair workers and a comparison group. Fundam Appl Toxicol 12:42–55CrossRefGoogle Scholar
  46. Fisk AT, Norstrom RJ, Cymbalisty CD, Muir DCG (1998) Dietary accumulation and depuration of hydrophobic organochlorines: bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ Toxicol Chem 17:951–961CrossRefGoogle Scholar
  47. Fox K, Zauke GP, Butte W (1994) Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 28:99–109CrossRefGoogle Scholar
  48. Frame GM, Cochran JW, Bowadt SS (1996) Complete PCB congener distribution for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J High Resolut Chromatogr 19:657–668CrossRefGoogle Scholar
  49. Glausch A, Hahn J, Schurig V (1995) Enantioselective determination of chiral 2,2′,3,3′,4,6′- hexachlorobiphenyl (PCB 132) in human milk samples by multidimensional gas chromatography/electron capture detection and by mass spectrometry. Chemosphere 30:2079–2085CrossRefGoogle Scholar
  50. Gobas FAPC, Zhang X, Wells R (1993) Gastrointestinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ Sci Technol 27:2855–2863CrossRefGoogle Scholar
  51. Goerke H, Weber K (1990) Population-dependent elimination of various polychlorinated biphenyls in Nereis diversicolor (Polychaeta). Mar Environ Res 29:205–226CrossRefGoogle Scholar
  52. Goerke H, Weber K (2001) Species-specific elimination of polychlorinated biphenyls in estuarine animals and its impact on residue patterns. Mar Environ Res 51:131–149CrossRefGoogle Scholar
  53. Goldstone J, McArthur A, Kubota A, Zanette J, Parente T, Jonsson M, Nelson D, Stegeman J (2010) Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics 11:643CrossRefGoogle Scholar
  54. Grandjean P, Budtz-Jorgensen E, Barr DB, Needham LL, Weihe P, Heinzow B (2008) Elimination half-lives of polychlorinated biphenyl congeners in children. Environ Sci Technol 42:6991–6996CrossRefGoogle Scholar
  55. Hansen LG (2001) Identification of steady-state and episodic PCB congeners from multiple pathway exposures. In: Robertson LW, Hansen LG (eds) PCBs. Recent advances in environmental toxicology and heath effects. University Press of Kentucky, Lexington, pp 47–50Google Scholar
  56. Hansen LG, Welborn ME (1977) Distribution, dilution, and elimination of polychlorinated biphenyl analogs in growing swine. J Pharm Sci 66:497–501CrossRefGoogle Scholar
  57. Harden F, Muller J, Toms L (2004) National dioxins program, technical report no. 9. Dioxins in the Australian population: levels in blood. Australian Government, Department of the Environment and Heritage. Accessed 24 Mar 2015
  58. Harner T, Wiberg K, Norstrom R (2000) Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ Sci Technol 34:218–220CrossRefGoogle Scholar
  59. Harrad S, Hazrati S, Ibarra C (2006) Concentrations of polychlorinated biphenyls in indoor air and polybrominated diphenyl ethers in indoor air and dust in Birmingham, United Kingdom: implications for human exposure. Environ Sci Technol 40:4633–4638CrossRefGoogle Scholar
  60. Hatcher-Martin JM, Gearing M, Steenland K, Levey AI, Miller GW, Pennell KD (2012) Association between polychlorinated biphenyls and Parkinson's disease neuropathology. NeuroToxicol 33:1298–1304CrossRefGoogle Scholar
  61. Hopf NB, Ruder AM, Waters MA, Succop P (2013) Concentration-dependent half-lives of polychlorinated biphenyl in sera from an occupational cohort. Chemosphere 91:172–178CrossRefGoogle Scholar
  62. Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 44:2822–2827CrossRefGoogle Scholar
  63. Hu D, Lehmler HJ, Martinez A, Wang K, Hornbuckle KC (2010) Atmospheric PCB congeners across Chicago. Atmos Environ 44:1550–1557CrossRefGoogle Scholar
  64. Hühnerfuss H, Pfaffenberger B, Gehrecke B, Karbe L, König WA, Landgraff O (1995) Stereochemical effects of PCBs in the marine environement: seasonal variation of coplanar and atropisomeric PCBs in blue mussles (Mytilus edulis L.) of the German bight. Mar Poll Bull 30:332–340CrossRefGoogle Scholar
  65. Jamshidi A, Hunter S, Hazrati S, Harrad S (2007) Concentrations and chiral signatures of polychlorinated biphenyls in indoor and outdoor air and soil in a major UK conurbation. Environ Sci Technol 41:2153–2158CrossRefGoogle Scholar
  66. Jorundsdottir H, Lofstrand K, Svavarsson J, Bignert A, Bergman A (2010) Organochlorine compounds and their metabolites in seven Icelandic seabird species—a comparative study. Environ Sci Technol 44:3252–3259CrossRefGoogle Scholar
  67. Jursa S, Chocanowa J, Petrik J, Loksa J (2006) Dioxin-like and non-dixin like PCBs in human serum of Slovak population. Chemosphere 64:686–691CrossRefGoogle Scholar
  68. Kaiser K (1974) On the optical activity of polychlorinated biphenyls. Environ Pollut 7:93–101CrossRefGoogle Scholar
  69. Kania-Korwel I, Lehmler HJ (2013) Assigning atropisomer elution orders using atropisomerically enriched polychlorinated biphenyl fractions generated by microsomal metabolism. J Chromatogr A 1278:133–144CrossRefGoogle Scholar
  70. Kania-Korwel I, Lehmler HJ (2015) Chiral polychlorinated biphenyls: absorption, metabolism and excretion—a review. Environ Sci Pollut Res. doi: 10.1007/s11356-015-4150-2
  71. Kania-Korwel I, Shaikh N, Hornbuckle KC, Robertson LW, Lehmler HJ (2007) Enantioselective disposition of PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) in C57BL/6 mice after oral and intraperitoneal administration. Chirality 19:56–66Google Scholar
  72. Kania-Korwel I, Hornbuckle KC, Robertson LW, Lehmler HJ (2008a) Influence of dietary fat on the enantioselective disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in female mice. Food Chem Toxicol 46:637–644Google Scholar
  73. Kania-Korwel I, Hornbuckle KC, Robertson LW, Lehmler HJ (2008b) Dose-dependent enantiomeric enrichment of 2,2′,3,3′,6,6′-hexachlorobiphenyl in female mice. Environ Toxicol Chem 27:299–305CrossRefGoogle Scholar
  74. Kania-Korwel I, Vyas SM, Song Y, Lehmler HJ (2008c) Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomers. J Chromatogr A 1207:146–154Google Scholar
  75. Kania-Korwel I, Xie W, Hornbuckle KC, Robertson LW, Lehmler HJ (2008d) Enantiomeric enrichment of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) in mice after induction of CYP enzymes. Arch Environ Contam Toxicol 55:510–517Google Scholar
  76. Kania-Korwel I, El-Komy MHME, Veng-Pedersen P, Lehmler HJ (2010) Clearance of polychlorinated biphenyl atropisomers is enantioselective in female C57Bl/6 mice. Environ Sci Technol 44:2828–2835CrossRefGoogle Scholar
  77. Kania-Korwel I, Duffel MW, Lehmler HJ (2011) Gas chromatographic analysis with chiral cyclodextrin phases reveals the enantioselective formation of hydroxylated polychlorinated biphenyls by rat liver microsomes. Environ Sci Technol 45:9590–9596CrossRefGoogle Scholar
  78. Karasek L, Hajslova J, Rosmus J, Huehnerfuss H (2007) Methylsulfonyl PCB and DDE metabolites and their enantioselective gas chromatographic separation in human adipose tissues, seal blubber and pelican muscle. Chemosphere 67:S22–S27CrossRefGoogle Scholar
  79. Kijlstra A, Traag WA, Hoogenboom LAP (2007) Effect of flock size on dioxin levels in eggs from chickens kept outside. Poult Sci 86:2042–2048CrossRefGoogle Scholar
  80. Kiviranta H, Tuomisto JT, Tuomisto J, Tukiainen E, Vartiainen T (2005) Polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the general population in Finland. Chemosphere 60:854–869CrossRefGoogle Scholar
  81. Koenig S, Fernandez P, Sole M (2012) Differences in cytochrome P450 enzyme activities between fish and crustacea: relationship with the bioaccumulation patterns of polychlorobiphenyls (PCBs). Aquat Toxicol 108:11–17CrossRefGoogle Scholar
  82. Konwick BJ, Garrison AW, Blanck MC, Avants JK, Fisk AT (2006) Bioaccumulation, biotransformation, and metabolite formation of Fipronil and chiral legacy pesticides in rainbow trout. Environ Sci Technol 40:2930–2936CrossRefGoogle Scholar
  83. Kostyniak P, Hansen L, Widholm J, Fitzpatrick R, Olson J, Helferich J, Kim K, Sable H, Seegal R, Pessah I, Schantz S (2005) Formulation and characterization of an experimental PCB mixture designed to mimic human exposure from contaminated fish. Toxicol Sci 88:400–411CrossRefGoogle Scholar
  84. Lehmler HJ, Robertson LW (2001) Atropisomers of PCBs. In: Robertson LW, Hansen LG (eds) PCBs: recent advances in environmental toxicology and health effects. University Press of Kentucky, Lexington, pp 61–65Google Scholar
  85. Lehmler HJ, Robertson LW, Garrison AW, Kodavanti PRS (2005) Effects of PCB 84 enantiomers on [3H] phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. Toxicol Lett 156:391–400Google Scholar
  86. Lehmler HJ, Harrad SJ, Hühnerfuss H, Kania-Korwel I, Lee CM, Lu Z, Wong CS (2009) Chiral polychlorinated biphenyl transport, metabolism and distribution: a review. Environ Sci Technol 44:2757–2766CrossRefGoogle Scholar
  87. Leney JL, Balkwill KC, Drouillard KG, Haffner GD (2006a) Determination of polychlorinated biphenyl and polycyclic aromatic hydrocarbon elimination rates in adult green and leopard frogs. Environ Toxicol Chem 25:1627–1634CrossRefGoogle Scholar
  88. Leney JL, Drouillard KG, Haffner GD (2006b) Metamorphosis increases biotransformation of polychlorinated biphenyls: a comparative study of polychlorinated biphenyl metabolism in green frogs (Rana clamitans) and leopard frogs (Rana pipiens) at various life stages. Environ Toxicol Chem 25:2971–2980CrossRefGoogle Scholar
  89. Leney JL, Drouillard KG, Haffner GD (2006c) Does metamorphosis increase the susceptibility of frogs to highly hydrophobic contaminants? Environ Sci Technol 40:1491–1496CrossRefGoogle Scholar
  90. Lipscomb JC, Ohanian EV (2006) Toxicokinetics and risk assessment. Informa Health Care, New YorkGoogle Scholar
  91. Lu Z, Fisk AT, Kovacs KM, Lydersen C, McKinney MA, Tomy GT, Rosenburg B, McMeans BC, Muir DCG, Wong CS (2014) Temporal and spatial variation in polychlorinated biphenyl chiral signatures of the Greenland shark (Somniosus microcephalus) and its arctic marine food web. Environ Pollut 186:216–225CrossRefGoogle Scholar
  92. Luotamo M, Elovaara E, Raunio H, Pelkonen O, Riihimäki V, Vainio H (1991a) Distribution and effects on cytochrome P450 system of two hexachlorobiphenyl isomers in the rat. Arch Toxicol 65:661–665CrossRefGoogle Scholar
  93. Luotamo M, Järvisalo J, Aitio A (1991b) Assessment of exposure to polychlorinated biphenyls: analysis of selected isomers in blood and adipose tissue. Environ Res 54:121–134CrossRefGoogle Scholar
  94. Lutz RJ, Dederick RL, Tuey D, Sipes IG, Anderson MW, Matthews HB (1984) Comparison of the pharmacokinetics of several polychlorinated biphenyls in mouse, rat, dog and monkey by means of a physiological pharmacokinetic model. Drug Metab Dispos 12:527–535Google Scholar
  95. Machala M, Nezveda K, Petrivalsky M, Jarosova AB, Piacka V, Svobodova Z (1997) Monooxygenase activities in carp as biochemical markers of pollution by polycyclic and polyhalogenated aromatic hydrocarbons: choice of substrates and effects of temperature, gender and capture stress. Aquat Toxicol 37:113–123CrossRefGoogle Scholar
  96. Matthews HB, Anderson MW (1975) Effect of chlorination on the distribution and excretion of polychlorinated biphenyls. Drug Metab Dispos 3:371–380Google Scholar
  97. Matthews HB, Tuey DB (1980) The effect of chlorine position on the distribution and excretion of four hexachlorobiphenyl isomers. Toxicol Appl Pharmacol 53:377–388CrossRefGoogle Scholar
  98. Mes J, Arnold DL, Bryce F (1995) The elimination and estimated half-lives of specific polychlorinated biphenyl congeners from the blood of female monkeys after discontinuation of daily dosing with Aroclor 1254. Chemosphere 30:789–800CrossRefGoogle Scholar
  99. Michaels G, Wheeler P, Barcellini A, Kinsell L (1960) Freely extractable lipid of human blood plasma: I. Methodology and observations in normal and abnormal subjects. Am J Clin Nutr 38:38–43Google Scholar
  100. Mitchell MM, Woods R, Chi LH, Schmidt RJ, Pessah IN, Kostyniak PJ, LaSalle JM (2012) Levels of select PCB and PBDE congeners in human postmortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder. Environ Mol Mutagen 53:589–598CrossRefGoogle Scholar
  101. Mizutani T, Hidaka K, Ohe T, Matsumoto M, Yamamoto K, Tajima K (1980) Comparative study on accumulation and elimination of hexachlorobiphenyls and decachlorobiphenyl in mice. Bull Environ Contam Toxicol 25:181–187CrossRefGoogle Scholar
  102. Morrison H, Yankovich T, Lazar R, Haffner GD (1995) Elimination rate constants of 36 PCBs in zebra mussels (Dreissena polymorpha) and exposure dynamics in the Lake St. Clair–Lake Erie corridor. Can J Fish Aquat Sci 52:2574–2582CrossRefGoogle Scholar
  103. Morrissey JA, Bleackley DS, Warner NA, Wong CS (2007) Enantiomer fractions of polychlorinated biphenyls in three selected standard reference materials. Chemosphere 66:326–331CrossRefGoogle Scholar
  104. Muller TA, Kohler H-PE (2004) Chirality of pollutants—effects on metabolism and fate. Appl Microbiol Biotechnol 64:300–316CrossRefGoogle Scholar
  105. Niimi AJ, Oliver BG (1988) Influence of molecular weight and molecular volume on dietary absorption efficiency of chemicals by fishes. Can J Fish Aquat Sci 45:222–227CrossRefGoogle Scholar
  106. O'Rourke S, Drouillard KG, Haffner GD (2004) Determination of laboratory and field elimination rates of polychlorinated biphenyls (PCBs) in the freshwater mussel, Elliptio complanata. Arch Environ Contam Toxicol 47:74–83CrossRefGoogle Scholar
  107. Parham FM, Kohn MC, Matthews HB, DeRosa C, Portier CJ (1997) Using structural information to create physiologically based pharmacokinetic models for all polychlorinated biphenyls. I. Tissue:blood partition coefficients. Toxicol Appl Pharmacol 144:340–347CrossRefGoogle Scholar
  108. Paterson G, Drouillard KG, Haffner GD (2007) PCB elimination by yellow perch (Perca flavescens) during an annual temperature cycle. Environ Sci Technol 41:824–829CrossRefGoogle Scholar
  109. Paterson G, Liu J, Haffner GD, Drouillard KG (2010) Contribution of fecal egestion to the whole body elimination of polychlorinated biphenyls by Japanese Koi (Cyprinus carpio). Environ Sci Technol 44:5769–5774CrossRefGoogle Scholar
  110. Patterson JDG, Wong L-Y, Turner WE, Caudill SP, DiPietro ES, McClure PC, Cash TP, Osterloh JD, Pirkle JL, Sampson EJ, Needham LL (2009) Levels in the U.S. population of those persistent organic pollutants (2003–2004) included in the Stockholm Convention or in other long-range transboundary air pollution agreements. Environ Sci Technol 43:1211–1218CrossRefGoogle Scholar
  111. Pessah IN, Lehmler HJ, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W (2009) Enantiomeric specificity of (−)-2,2′,3,3′,6,6′-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem Res Toxicol 22:201–207CrossRefGoogle Scholar
  112. Phillips DL, Pirkle JL, Burse VW, Bernert JT Jr, Henderson LO, Needham LL (1989) Chlorinated hydrocarbon levels in human serum: effects of fasting and feeding. Arch Environ Contam Toxicol 18:495–500CrossRefGoogle Scholar
  113. Pothoven SA, Fahnenstiel GL, Vanderploeg HA (2004) Spatial distribution, biomass and population dynamics of Mysis relicta in Lake Michigan. Hydrobiologia 522:291–299CrossRefGoogle Scholar
  114. Raccanelli S, Libralato S, Favotto M (2008) On the detoxification of benthic bivalves contaminated by POPs: insights from experimental and modelling approaches. Environ Chem Lett 6:251–258CrossRefGoogle Scholar
  115. Ritter R, Scheringer M, MacLeod M, Moeckel C, Jones KC, Hungerbuhler K (2011) Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environ Health Perspect 119:225–231CrossRefGoogle Scholar
  116. Robertson LW, Hansen LG (2001) PCBs: recent advances in environmental toxicology and health effects. University Press of Kentucky, Lexington, 461 ppGoogle Scholar
  117. Robson M, Harrad S (2004) Chiral PCB signatures in air and soil: implications for atmospheric source apportionment. Environ Sci Technol 38:1662–1666CrossRefGoogle Scholar
  118. Schaeffer D, Dellinger J, Needham L, Hansen L (2006) Serum PCB profiles in Native Americans from Wisconsin based on region, diet, age, and gender: implications for epidemiology studies. Sci Total Environ 357:74–87CrossRefGoogle Scholar
  119. Schecter A, Mes J, Davies D (1989) Polychlorinated biphenyl (PCB), DDT, DDE and hexachlorobenzene (HCB) and PCDD/F isomer levels in various organs in autopsy tissue from North American patients. Chemosphere 18:811–818CrossRefGoogle Scholar
  120. Schecter A, Colacino J, Haffner D, Patel K, Opel M, Papke O, Birnbaum L (2010) Perfluorinated compounds, polychlorinated biphenyl, and organochlorine pesticide contamination in composite food samples from Dallas, Texas. Environ Health Perspect 118:796–802CrossRefGoogle Scholar
  121. Schisterman EF, Whitcomb BW, Louis GMB, Louis TA (2005) Lipid adjustment in the analysis of environmental contaminants and human health risks. Environ Health Perspect 113:853–857CrossRefGoogle Scholar
  122. Schnellmann R, Putnam C, Sipes I (1983) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by human hepatic microsomes. Biochem Pharmacol 32:3233–3239CrossRefGoogle Scholar
  123. Seegal RF, Fitzgerald EF, Hills EA, Wolff MS, Haase RF, Todd AC, Parsons P, Molho ES, Higgins DS, Factor SA (2011) Estimating the half-lives of PCB congeners in former capacitor workers measured over a 28-year interval. J Expo Sci Environ Epidemiol 21:234–246CrossRefGoogle Scholar
  124. Shirai JH, Kissel JC (1996) Uncertainty in estimated half-lives of PCBS in humans: impact on exposure assessment. Sci Total Environ 187:199–210CrossRefGoogle Scholar
  125. Sijm DTHM, Seinen W, Opperhuizen A (1992) Life-cycle biomagnification study in fish. Environ Sci Technol 26:2162–2174CrossRefGoogle Scholar
  126. Simon T, Britt JK, James RC (2007) Development of a neurotoxic equivalence scheme of relative potency for assessing the risk of PCB mixtures. Regul Toxicol Pharmacol 48:148–170Google Scholar
  127. Sipes IG, Slocumb ML, Chen HS, Carter DE (1982) 2,3,6,2′,3′,6′-Hexachlorobiphenyl: distribution, metabolism, and excretion in the dog and the monkey. Toxicol Appl Pharmacol 62:317–324CrossRefGoogle Scholar
  128. Spinelli J, Ng C, Weber J, Connors J, Gascoyne R, Lai A, Brooks-Wilson A, Le N, Berry B, Gallagher R (2007) Organochlorines and risk of non-Hodgkin lymphoma. Int J Cancer 121:2767–2775CrossRefGoogle Scholar
  129. Stegeman JJ, Woodin BR, Singh H, Oleksiak MF, Celander M (1997) Cytochromes P450 (CYP) in tropical fishes: catalytic activities, expression of multiple CYP proteins and high levels of microsomal P450 in liver of fishes from Bermuda. Comp Biochem Phys C 116:61–75Google Scholar
  130. Su G, Liu X, Gao Z, Xian Q, Feng J, Zhang X, Giesy JP, Wei S, Liu H, Yu H (2012) Dietary intake of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) from fish and meat by residents of Nanjing, China. Environ Int 42:138–143CrossRefGoogle Scholar
  131. Szafran-Urbaniak B (2008) Application of validated method for determination of selected polychlorinated biphenyls in human adipose tissue samples. Environ Toxicol Pharmacol 25:131–135CrossRefGoogle Scholar
  132. Takabe Y, Tsuno H, Nishimura F, Guan Y, Mizuno T, Matsumura C, Nakano T (2011) Applicability of Corbicula as a bioindicator for monitoring organochlorine pesticides in fresh and brackish waters. Environ Monit Assess 179:47–63CrossRefGoogle Scholar
  133. Tanabe S, Nakagawa Y, Tatsukawa R (1981) Absorption efficiency and biological half-life of individual chlorobiphenyls in rats treated with Kanechlor products. Agric Biol Chem 45:717–716Google Scholar
  134. Tanabe S, Tatsukawa R, Phillips DJH (1987) Mussels as bioindicators of PCB pollution: a case study on uptake and release of PCB isomers and congeners in green-lipped mussels (Perna viridis) in Hong Kong waters. Environ Pollut 47:41–62CrossRefGoogle Scholar
  135. Thomann RV (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ Sci Technol 23:699–707CrossRefGoogle Scholar
  136. Thomas K, Xue J, Williams R, Jones P, Whitaker D (2012) Polychlorinated biphenyls (PCBs) in school buildings: sources, environmental levels, and exposures. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research LaboratoryGoogle Scholar
  137. Toda M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Inoue Y, Mori T (2012) Absolute configuration of atropisomeric polychlorinated biphenyl 183 enantiomerically enriched in human samples. J Phys Chem A 116:9340–9346Google Scholar
  138. Turyk M, Anderson H, Hanrahan L, Falk C, Steenport D, Needham L, Patterson DJ, Freels S, Persky V, Great Lakes Consortium (2006) Relationship of serum levels of individual PCB, dioxin, and furan congeners and DDE with Great Lakes sport-caught fish consumption. Environ Res 100:173–183CrossRefGoogle Scholar
  139. Ueda H, Nakayama T, Kanai M, Araki S (1999) The state of dioxin accumulation in the human body, blood, wildlife, and food: findings of the fiscal 1998 survey. Environmental Health and Safety Division, Environmental Health Department, Environment Agency of Japan, Accessed 24 Mar 2015
  140. Uno T, Ishizuka M, Itakura T (2012) Cytochrome P450 (CYP) in fish. Environ Toxicol Pharmacol 34:1–13CrossRefGoogle Scholar
  141. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241CrossRefGoogle Scholar
  142. Van Geest JL, Mackay D, Poirier DG, Sibley PK, Solomon KR (2011) Accumulation and depuration of polychlorinated biphenyls from field-collected sediment in three freshwater organisms. Environ Sci Technol 45:7011–7018CrossRefGoogle Scholar
  143. Van Overmeire I, Pussemier L, Waegeneers N, Hanot V, Windal I, Boxus L, Covaci A, Eppe G, Scippo ML, Sioen I, Bilau M, Gellynck X, De Steur H, Tangni EK, Goeyens L (2009) Assessment of the chemical contamination in home-produced eggs in Belgium: general overview of the CONTEGG study. Sci Total Environ 407:4403–4410CrossRefGoogle Scholar
  144. Verhulst SL, Nelen V, Hond ED, Koppen G, Beunckens C, Vael C, Schoeters G, Desager K (2009) Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life. Environ Health Perspect 117:122–126CrossRefGoogle Scholar
  145. Voorspoels S, Covaci A, Neels H (2008) Dietary PCB intake in Belgium. Environ Toxicol Pharmacol 25:179–182CrossRefGoogle Scholar
  146. Wagman N, Strandberg B, Tysklind M (2001) Dietary uptake and elimination of selected polychlorinated biphenyl congeners and hexachlorobenzene in earthworms. Environ Toxicol Chem 20:1778–1784CrossRefGoogle Scholar
  147. Wang L, Liu X, Shan Z, Shi L (2010a) Using electrotopological state indices to model the depuration rates of polychlorinated biphenyls in mussels of Elliptio complanata. J Environ Sci 22:1544–1550CrossRefGoogle Scholar
  148. Wang N, Kong D, Cai D, Shi L, Cao Y, Pang G, Yu R (2010b) Levels of polychlorinated biphenyls in human adipose tissue samples from Southeast China. Environ Sci Technol 44:4334–4340CrossRefGoogle Scholar
  149. Ward E, Schulte P, Grajewski B, Andersen A, Patterson DJ, Turner W, Jellum E, Deddens J, Friedland J, Roeleveld N, Waters M, Butler M, DiPietro E, Needham L (2000) Serum organochlorine levels and breast cancer: a nested case–control study of Norwegian women. Cancer Epidemiol Biomarkers Prev 9:1357–1367Google Scholar
  150. Warner NA, Wong CS (2006) The freshwater invertebrate Mysis relicta can eliminate chiral organochlorine compounds enantioselectively. Environ Sci Technol 40:4158–4164CrossRefGoogle Scholar
  151. Warner NA, Martin JW, Wong CS (2009) Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome P-450 isozymes to form hydroxylated metabolites. Environ Sci Technol 43:114–121CrossRefGoogle Scholar
  152. Whitcomb B, Schisterman E, Buck G, Weiner J, Greizerstein H, Kostyniak P (2005) Relative concentrations of organochlorines in adipose tissue and serum among reproductive age women. Environ Toxicol Pharma 19:203–213CrossRefGoogle Scholar
  153. White RD, Shea D, Stegeman JJ (1997) Metabolism of the aryl hydrocarbon receptor agonist 3,3′,4,4′-tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro. Drug Metab Dispos 25:564–572Google Scholar
  154. Wiberg K, Andersson PL, Berg H, Olsson P-E, Haglund P (2006) The fate of chiral organochlorine compounds and selected metabolites in intraperitoneally exposed Arctic char (Salvelinus alpinus). Environ Toxicol Chem 25:1465–1473CrossRefGoogle Scholar
  155. Windal I, Hanot V, Marchi J, Huysmans G, Van Overmeire I, Waegeneers N, Goeyens L (2009) PCB and organochlorine pesticides in home-produced eggs in Belgium. Sci Total Environ 407:4430–4437CrossRefGoogle Scholar
  156. Wolff M, Schecter A (1991) Accidental exposure of children to polychlorinated biphenyls. Arch Environ Contam Toxicol 20:449–453CrossRefGoogle Scholar
  157. Wolff MS, Thornton J, Fischbein A, Lilis R, Selikoff IJ (1982) Disposition of polychlorinated biphenyl congeners in occupationally exposed persons. Toxicol Appl Pharmacol 62:294–306CrossRefGoogle Scholar
  158. Wolff M, Fischbein A, Selikoff I (1992) Changes in PCB serum concentrations among capacitor manufacturing workers. Environ Res 59:202–216CrossRefGoogle Scholar
  159. Wong CS, Garrison AW, Smith PD, Foreman WT (2001) Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic and riparian biota. Environ Sci Technol 35:2448–2454CrossRefGoogle Scholar
  160. Wong CS, Lau F, Clark M, Mabury SA, Muir DCG (2002) Rainbow trout (Oncorhynchus mykiss) can eliminate chiral organochlorine compounds enantioselectively. Environ Sci Technol 36:1257–1262CrossRefGoogle Scholar
  161. Wong CS, Mabury SA, Whittle DM, Backus SM, Teixeira C, Devault DS, Bronte CR, Muir DCG (2004) Organochlorine compounds in Lake Superior: chiral polychlorinated biphenyls and biotransformation in the aquatic food web. Environ Sci Technol 38:84–92CrossRefGoogle Scholar
  162. Wu X, Pramanik A, Duffel MW, Hrycay EG, Bandiera SM, Lehmler HJ, Kania-Korwel I (2011) 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat liver microsomes. Chem Res Toxicol 24:2249–2257CrossRefGoogle Scholar
  163. Wu X, Duffel M, Lehmler HJ (2013a) Oxidation of polychlorinated biphenyls by liver tissue slices from phenobarbital-preatreated mice is congener-specific and atropselective. Chem Res Toxicol 26:1642–1651Google Scholar
  164. Wu X, Kania-Korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler HJ (2013b) Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica 43:933–947CrossRefGoogle Scholar
  165. Wu X, Kammerer A, Lehmler HJ (2014) Microsomal oxidation of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) results in species-dependent chiral signatures of the hydroxylated metabolites. Environ Sci Technol 48:2436–2444Google Scholar
  166. Wyss P, Mühlebach S, Bickel M (1982) Pharmacokinetics of 2,2′,4,4′,5,5′-hexachlorobiphenyl (6-CB) in rats with decreasing adipose tissue mass. I. Effects of restricting food intake two weeks after administration of 6-CB. Drug Metab Dispos 10:657–661Google Scholar
  167. Yang YH, Wang JL, Miranda CL, Buhler DR (1998) CYP2M1: cloning, sequencing, and expression of a new cytochrome P450 from rainbow trout liver with fatty acid (omega-6)-hydroxylation activity. Arch Biochem Biophys 352:271–280CrossRefGoogle Scholar
  168. Yang D, Kania-Korwel I, Ghogha A, Chen H, Stamou M, Bose DD, Pessah IN, Lehmler HJ, Lein PJ (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 138:379–92Google Scholar
  169. Zheng J, Yan X, Chen S-J, Peng X-W, Hu G-C, Chen K-H, Luo X-J, Mai B-X, Yang Z-Y (2013) Polychlorinated biphenyls in human hair at an e-waste site in China: composition profiles and chiral signatures in comparison to dust. Environ Int 54:128–133CrossRefGoogle Scholar
  170. Zimmer L, Balker C, Sipes IG (1980) Correlation of microsomal metabolism of PCBs to their rates of excretion by dogs and monkeys. Fed Proc 39:998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Occupational and Environmental Health, College of Public HealthThe University of IowaIowa CityUSA

Personalised recommendations