Environmental Science and Pollution Research

, Volume 22, Issue 15, pp 11327–11339 | Cite as

A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus

  • Simone Hasenbein
  • Richard E. Connon
  • Sharon P. Lawler
  • Juergen GeistEmail author
Research Article


Laboratory toxicity testing is the primary tool used for surface water environmental risk assessment; however, there are critical information gaps regarding the sublethal effects of pesticides. In 10-day exposures, we assessed the lethal and sublethal (motility and growth) toxicities of four commonly used pesticides, bifenthrin, permethrin, cyfluthrin, and chlorpyrifos, on two freshwater invertebrates, Chironomus dilutus and Hyalella azteca. Pyrethroids were more toxic than the organophosphate chlorpyrifos in both species. Bifenthrin was most toxic to H. azteca survival and growth. Cyfluthrin was most toxic to C. dilutus. However, cyfluthrin had the greatest effect on motility on both H. azteca and C. dilutus. The evaluated concentrations of chlorpyrifos did not affect C. dilutus motility or growth, but significantly impacted H. azteca growth. Motility served as the most sensitive endpoint in assessing sublethal effects at low concentrations for both species, while growth was a good indicator of toxicity for all four pesticides for H. azteca. The integration of sublethal endpoints in ambient water monitoring and pesticide regulation efforts could improve identification of low-level pesticide concentrations that may eventually cause negative effects on food webs and community structure in aquatic environments.


Species selection Sublethal endpoint Pyrethroid Organophosphate Growth Motility Ecological risk assessment 



The authors thank Linda Deanovic, Krista Hoffmann, A. Keith Miles, Jade Peralta, and Marie Stillway for their support. We are particularly grateful to Inge Werner who was involved in a pre-study for this project and who served as a mentor for Simone Hasenbein during her entire Ph.D. project. This study was funded by the State and Federal Contractors Water Agency (contract no. 15-33 to REC), California Department of Pesticide Regulation (contract no. 10-C0096 and 13-C0022 to SPL), and a postgraduate scholarship by Bayerische Forschungsstiftung, Germany (contract no. DOK-121-10 to JG). The authors acknowledge the support by the Faculty Graduate Center Weihenstephan of TUM Graduate School at Technische Universität München, Germany.

Compliance with ethical standards

Accepted principles of ethical and professional conduct have been followed in the study. The authors declare no potential conflicts of interest (financial or non-financial), and the welfare of animals was considered according to the relevant laws (only invertebrates were used here).


  1. Agra AR, Soares AM (2009) Effects of two insecticides on survival, growth and emergence of Chironomus riparius Meigen. Bull Environ Contam Toxicol 82:501–504. doi: 10.1007/s00128-009-9658-z CrossRefGoogle Scholar
  2. Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the central valley, California, USA. Environ Toxicol Chem 24:966–972. doi: 10.1897/04-146R1.1 CrossRefGoogle Scholar
  3. Anderson B et al (2014) Impacts of pesticides in a central California estuary. Environ Monit Assess 186:1801–1814. doi: 10.1007/s10661-013-3494-7 CrossRefGoogle Scholar
  4. Anderson BS, Phillips BM, Hunt JW, Worcester K, Adams M, Kapellas N, Tjeerdema RS (2006) Evidence of pesticide impacts in the Santa Maria river watershed, California, USA. Environ Toxicol Chem 25:1160–1170. doi: 10.1897/05-231r.1 CrossRefGoogle Scholar
  5. Ankley GT, Benoit DA, Balogh JC, Reynoldson TB, Day KE, Hoke RA (1994a) Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Environ Toxicol Chem 13:627–635. doi: 10.1897/1552-8618(1994)13[627:eopcfi];2 CrossRefGoogle Scholar
  6. Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994b) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13:621–626. doi: 10.1002/etc.5620130411 CrossRefGoogle Scholar
  7. Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 110:149–155. doi: 10.1016/0742-8413(94)00098-u Google Scholar
  8. Baird DJ, Barber I, Bradley M, Soares AMVM, Calow P (1991) A comparative study of genotype sensitivity to acute toxic stress using clones of daphnia-magna straus. Ecotoxicol Environ Saf 21:257–265. doi: 10.1016/0147-6513(91)90064-v CrossRefGoogle Scholar
  9. Baird DJ, Van den Brink PJ (2007) Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol Environ Saf 67:296–301. doi: 10.1016/j.ecoenv.2006.07.001 CrossRefGoogle Scholar
  10. Beggel S, Werner I, Connon RE, Geist JP (2010) Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Sci Total Environ 408:3169–3175. doi: 10.1016/j.scitotenv.2010.04.004 CrossRefGoogle Scholar
  11. Bereswill R, Streloke M, Schulz R (2013) Current-use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements. Environ Toxicol Chem 32:1254–1263. doi: 10.1002/etc.2170 CrossRefGoogle Scholar
  12. Brander SM, Werner I, White JW, Deanovic L (2009) Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations. Environ Toxicol Chem 28:1493–1499CrossRefGoogle Scholar
  13. Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499. doi: 10.1046/j.1523-1739.2000.99343.x CrossRefGoogle Scholar
  14. Brooks ML et al (2012) Life histories, salinity zones, and sublethal contributions of contaminants to pelagic fish declines illustrated with a case study of San Francisco Estuary, California, USA. Estuar Coasts 35:603–621. doi: 10.1007/s12237-011-9459-6 CrossRefGoogle Scholar
  15. Budd R, O’Geen A, Goh KS, Bondarenko S, Gan J (2009) Efficacy of constructed wetlands in pesticide removal from tailwaters in the central valley, California. Environ Sci Technol 43:2925–2930. doi: 10.1021/es802958q CrossRefGoogle Scholar
  16. Campero M, Slos S, Ollevier F, Stoks R (2007) Sublethal pesticide concentrations and predation jointly shape life history: behavioral and physiological mechanisms. Ecol Appl 17:2111–2122. doi: 10.1890/07-0442.1 CrossRefGoogle Scholar
  17. Chambers JE, Carr RL (1995) Biochemical mechanisms contributing to species differences in insecticidal toxicity. Toxicology 105:291–304. doi: 10.1016/0300-483x(95)03225-5 CrossRefGoogle Scholar
  18. Chen J, Wang Z, Li G, Guo R (2014) The swimming speed alteration of two freshwater rotifers Brachionus calyciflorus and Asplanchna brightwelli under dimethoate stress. Chemosphere 95:256–260. doi: 10.1016/j.chemosphere.2013.08.086 CrossRefGoogle Scholar
  19. Christensen BT, Lauridsen TL, Ravn HW, Bayley M (2005) A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquat Toxicol 73:210–220. doi: 10.1016/j.aquatox.2005.03.011 CrossRefGoogle Scholar
  20. Clark AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol B 92:419–446. doi: 10.1016/0305-0491(89)90114-4 Google Scholar
  21. Clark JM, Matsumura F (1982) Two different types of inhibitory effects of pyrethroids on nerve Ca− and Ca+Mg-atpase activity in the squid, Loligo pealei. Pestic Biochem Physiol 18:180–190. doi: 10.1016/0048-3575(82)90104-3 CrossRefGoogle Scholar
  22. Connon RE et al (2012a) Transcription profiling in environmental diagnostics: health assessments in Columbia River Basin steelhead (Oncorhynchus mykiss). Environ Sci Technol 46:6081–6087. doi: 10.1021/es3005128 CrossRefGoogle Scholar
  23. Connon RE et al (2009) Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (fam. Osmeridae). BMC Genomics 10:608. doi: 10.1186/1471-2164-10-608 CrossRefGoogle Scholar
  24. Connon RE, Geist J, Werner I (2012b) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12:12741–12771CrossRefGoogle Scholar
  25. Deanovic LA, Markiewicz D, Stillway M, Fong S, Werner I (2013) Comparing the effectiveness of chronic water column tests with the crustaceans Hyalella azteca (order: Amphipoda) and Ceriodaphnia dubia (order: Cladocera) in detecting toxicity of current-use insecticides. Environ Toxicol Chem 32:707–712. doi: 10.1002/etc.2111 CrossRefGoogle Scholar
  26. Ding Y, Landrum PF, You J, Harwood AD, Lydy MJ (2012) Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to toxicity—part I. Environ Toxicol Chem 31:2159–2167. doi: 10.1002/etc.1935 CrossRefGoogle Scholar
  27. Ding Y, Weston DP, You J, Rothert AK, Lydy MJ (2011) Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca. Arch Environ Contam Toxicol 61:83–92. doi: 10.1007/s00244-010-9614-2 CrossRefGoogle Scholar
  28. Dudgeon D et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi: 10.1017/S1464793105006950 CrossRefGoogle Scholar
  29. Eide I, Johansson E (1994) Statistical experimental design and projections to latent structures analysis in the evaluation of fuel blends with respect to particulate emissions. Chemom Intell Lab Syst 22:77–85. doi: 10.1016/0169-7439(93)e0042-3 CrossRefGoogle Scholar
  30. Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, qsars, and mixture effects. Environ Sci Technol 36:4201–4217. doi: 10.1021/es015848h CrossRefGoogle Scholar
  31. Floyd EY, Geist JP, Werner I (2008) Acute, sublethal exposure to a pyrethroid insecticide alters behavior, growth, and predation risk in larvae of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 27:1780–1787. doi: 10.1897/07-448.1 CrossRefGoogle Scholar
  32. Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Indic 11:1507–1516. doi: 10.1016/j.ecolind.2011.04.002 CrossRefGoogle Scholar
  33. Geist J, Werner I, Eder KJ, Leutenegger CM (2007) Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquat Toxicol 85:28–39. doi: 10.1016/j.aquatox.2007.07.011 CrossRefGoogle Scholar
  34. Godin SJ, Scollon EJ, Hughes MF, Potter PM, DeVito MJ, Ross MK (2006) Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab Dispos 34:1764–1771. doi: 10.1124/dmd.106.010058 CrossRefGoogle Scholar
  35. Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8:381–391. doi: 10.1002/etc.5620080504 CrossRefGoogle Scholar
  36. Heath AG, Cech JJ, Zinkl JG, Steele MD (1993) Sublethal effects of three pesticides on Japanese medaka. Arch Environ Contam Toxicol 25:485–491. doi: 10.1007/bf00214337 Google Scholar
  37. Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in Central Texas. Environ Pollut 157:110–116. doi: 10.1016/j.envpol.2008.07.023 CrossRefGoogle Scholar
  38. Hladik ML, Kuivila KM (2012) Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States. J Environ Monit 14:1838–1845CrossRefGoogle Scholar
  39. Hoffman ER, Fisher SW (1994) Comparison of a field and laboratory-derived population of chironomus riparius (diptera: Chironomidae): biochemical and fitness evidence for population divergence. J Econ Entomol 87:318–325CrossRefGoogle Scholar
  40. Holomuzki JR, Feminella JW, Power ME (2010) Biotic interactions in freshwater benthic habitats. J N Am Benthol Soc 29:220–244. doi: 10.1899/08-044.1 CrossRefGoogle Scholar
  41. Hsieh BH, Deng JF, Ger J, Tsai WJ (2001) Acetylcholinesterase inhibition and the extrapyramidal syndrome: a review of the neurotoxicity of organophosphate. Neurotoxicology (Little Rock) 22:423–427. doi: 10.1016/s0161-813x(01)00044-4 CrossRefGoogle Scholar
  42. Hua J, Cothran R, Stoler A, Relyea R (2013) Cross-tolerance in amphibians: wood frog mortality when exposed to three insecticides with a common mode of action. Environ Toxicol Chem 32:932–936. doi: 10.1002/etc.2121 CrossRefGoogle Scholar
  43. Jensen A, Forbes VE (2001) Interclonal variation in the acute and delayed toxicity of cadmium to the european prosobranch gastropod Potamopyrgus antipodarum (gray). Arch Environ Contam Toxicol 40:230–235CrossRefGoogle Scholar
  44. Johnson KR, Jepson PC, Jenkins JJ (2008) Esfenvalerate-induced case-abandonment in the larvae of the caddisfly (Brachycentrus americanus). Environ Toxicol Chem 27:397–403. doi: 10.1897/07-185r1.1 CrossRefGoogle Scholar
  45. Karnak RE, Collins WJ (1974) The susceptibility to selected insecticides and acetylcholinesterase activity in a laboratory colony of midge larvae, Chironomus tentans (diptera: Chironomidae). Bull Environ Contam Toxicol 12:62–69. doi: 10.1007/bf01713027 CrossRefGoogle Scholar
  46. Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Manag Sci 66:1122–1128. doi: 10.1002/ps.1990 CrossRefGoogle Scholar
  47. Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170Google Scholar
  48. Lee S, Gan J, Kim J-S, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23:1–6. doi: 10.1897/03-114 CrossRefGoogle Scholar
  49. Li H, Sun B, Lydy MJ, You J (2013) Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns. Environ Toxicol Chem 32:1040–1047. doi: 10.1002/etc.2147 CrossRefGoogle Scholar
  50. Liber K, Call DJ, Dawson TD, Whiteman FW, Dillon TM (1996) Effects of chironomus tentans larval growth retardation on adult emergence and ovipositing success: implications for interpreting freshwater sediment bioassays. Hydrobiologia 323:155–167. doi: 10.1007/bf00007844 CrossRefGoogle Scholar
  51. Lydy MJ, Austin KR (2004) Toxicity assessment of pesticide mixtures typical of the Sacramento–San Joaquin delta using Chironomus tentans. Arch Environ Contam Toxicol 48:49–55. doi: 10.1007/s00244-004-0056-6 CrossRefGoogle Scholar
  52. Major K, Soucek DJ, Giordano R, Wetzel MJ, Soto-Adames F (2013) The common ecotoxicology laboratory strain of Hyalella azteca is genetically distinct from most wild strains sampled in eastern North America. Environ Toxicol Chem 32:2637–2647. doi: 10.1002/etc.2355 Google Scholar
  53. Malison RL, Benjamin JR, Baxter CV (2010) Measuring adult insect emergence from streams: the influence of trap placement and a comparison with benthic sampling. J N Am Benthol Soc 29:647–656. doi: 10.1899/09-086.1 CrossRefGoogle Scholar
  54. Maul JD, Brennan AA, Harwood AD, Lydy MJ (2008) Effect of sediment-associated pyrethroids, fipronil, and metabolites on Chironomus tentans growth rate, body mass, condition index, immobilization, and survival. Environ Toxicol Chem 27:2582–2590. doi: 10.1897/08-185.1 CrossRefGoogle Scholar
  55. Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pestic Sci 54:408–417. doi: 10.1002/(sici)1096-9063(199812)54:4<408::aid-ps843>;2-t CrossRefGoogle Scholar
  56. Maund SJ, Travis KZ, Hendley P, Giddings JM, Solomon KR (2001) Probabilistic risk assessment of cotton pyrethroids: V. Combining landscape-level exposures and ecotoxicological effects data to characterize risks. Environ Toxicol Chem 20:687–692. doi: 10.1002/etc.5620200330 CrossRefGoogle Scholar
  57. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27:1719–1728CrossRefGoogle Scholar
  58. McKenney JCL, Weber DE, Celestial DM, MacGregor MA (1998) Altered growth and metabolism of an estuarine shrimp (Palaemonetes pugio) during and after metamorphosis onto fenvalerate-laden sediment. Arch Environ Contam Toxicol 35:464–471. doi: 10.1007/s002449900403 CrossRefGoogle Scholar
  59. Nahon S, Charles F, Lantoine F, Vétion G, Escoubeyrou K, Desmalades M, Pruski AM (2010) Ultraviolet radiation negatively affects growth and food quality of the pelagic diatom Skeletonema costatum. J Exp Mar Bio Ecol 383:164–170. doi: 10.1016/j.jembe.2009.12.006 CrossRefGoogle Scholar
  60. Nasuti C, Cantalamesa F, Falcioni G, Gabbianelli R (2003) Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 191:233–244. doi: 10.1016/s0300-483x(03)00207-5 CrossRefGoogle Scholar
  61. Naylor C, Pindar L, Calow P (1990) Inter-specific and intraspecific variation in sensitivity to toxins the effects of acidity and zinc on the freshwater crustaceans Asellus-aquaticus l and Gammarus-pulex l. Water Res 24:757–764. doi: 10.1016/0043-1354(90)90032-2 CrossRefGoogle Scholar
  62. Nowak C, Czeikowitz A, Vogt C, Oetken M, Streit B, Schwenk K (2008) Variation in sensitivity to cadmium among genetically characterized laboratory strains of the midge Chironomus riparius. Chemosphere 71:1950–1956. doi: 10.1016/j.chemosphere.2007.12.023 CrossRefGoogle Scholar
  63. Nyman A-M, Schirmer K, Ashauer R (2014) Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ Sci Technol 48:5946–5954. doi: 10.1021/es5005126 CrossRefGoogle Scholar
  64. Parry E, Young TM (2013) Distribution of pyrethroid insecticides in secondary wastewater effluent. Environ Toxicol Chem 32:2686–2694. doi: 10.1002/etc.2347 CrossRefGoogle Scholar
  65. Phillips BM, Anderson BS, Hunt JW, Siegler K, Voorhees JP, Tjeerdema RS, McNeill K (2012) Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA) Environ Toxicol Chem:n/a-n/a. doi : 10.1002/etc.1860
  66. Phipps GL, Mattson VR, Ankley GT (1995) Relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants. Arch Environ Contam Toxicol 28:281–286. doi: 10.1007/bf00213103 Google Scholar
  67. Proulx I, Hare L (2014) Differences in feeding behaviour among Chironomus species revealed by measurements of sulphur stable isotopes and cadmium in larvae. Freshw Biol 59:73–86. doi: 10.1111/fwb.12247 CrossRefGoogle Scholar
  68. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria, URL
  69. Rakotondravelo M, Anderson TD, Charlton R, Zhu K (2006a) Sublethal effects of three pesticides on activities of selected target and detoxification enzymes in the aquatic midge, Chironomus tentans (diptera: Chironomidae). Arch Environ Contam Toxicol 51:360–366. doi: 10.1007/s00244-005-0227-0 CrossRefGoogle Scholar
  70. Rakotondravelo ML, Anderson TD, Charlton RE, Zhu KY (2006b) Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (diptera: Chironomidae). Arch Environ Contam Toxicol 51:352–359. doi: 10.1007/s00244-005-0219-0 CrossRefGoogle Scholar
  71. Rebechi D, Richardi VS, Vicentini M, Guiloski IC, Assis HCS, Navarro-Silva MA (2014) Low malathion concentrations influence metabolism in Chironomus sancticaroli (diptera, Chironomidae) in acute and chronic toxicity tests. Rev Bras Entomol 58:296–301CrossRefGoogle Scholar
  72. Ristola T, Pellinen J, Ruokolainen M, Kostamo A, Kukkonen JVK (1999) Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environ Toxicol Chem 18:756–764. doi: 10.1002/etc.5620180423 CrossRefGoogle Scholar
  73. Ritz C, Streibig J (2005) Bioassay analysis using r. J Stat Softw 12:1–22Google Scholar
  74. Rubach MN, Baird DJ, Boerwinkel M-C, Maund SJ, Roessink I, Van den Brink PJ (2012) Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos. Ecotoxicology 21:2088–2101. doi: 10.1007/s10646-012-0962-8 CrossRefGoogle Scholar
  75. Rubach MN, Crum SJH, Van den Brink PJ (2011) Variability in the dynamics of mortality and immobility responses of freshwater arthropods exposed to chlorpyrifos. Arch Environ Contam Toxicol 60:708–721. doi: 10.1007/s00244-010-9582-6 CrossRefGoogle Scholar
  76. Scholz NL et al (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience 62:428–434. doi: 10.1525/bio.2012.62.4.13 CrossRefGoogle Scholar
  77. Sibley PK, Benoit DA, Ankley GT (1997) The significance of growth in chironomus tentans sediment toxicity tests: relationship to reproduction and demographic endpoints. Environ Toxicol Chem 16:336–345. doi: 10.1002/etc.5620160232 CrossRefGoogle Scholar
  78. Smith S Jr, Lizotte RE Jr (2007) Influence of selected water quality characteristics on the toxicity of lambda-cyhalothrin and gamma-cyhalothrin to Hyalella azteca. Bull Environ Contam Toxicol 79:548–551. doi: 10.1007/s00128-007-9253-0 CrossRefGoogle Scholar
  79. Soderlund DM et al (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59. doi: 10.1016/s0300-483x(01)00569-8 CrossRefGoogle Scholar
  80. SWAMP CSWRCB (2002) Toxicity testing sops: Hyalella azteca 10-day water toxicity test. Quality assurance management plan for the state of California’s surface water ambient monitoring program. Division of Water Quality, SacramentoGoogle Scholar
  81. US EPA (1991) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organismsGoogle Scholar
  82. US EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebratesGoogle Scholar
  83. US EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organismsGoogle Scholar
  84. Vaal MA, Van Leeuwen CJ, Hoekstra JA, Hermens JL (2000) Variation in sensitivity of aquatic species to toxicants: practical consequences for effect assessment of chemical substances. Environ Manag 25:415–423CrossRefGoogle Scholar
  85. Vais H, Atkinson S, Pluteanu F, Goodson SJ, Devonshire AL, Williamson MS, Usherwood PNR (2003) Mutations of the para sodium channel of Drosophila melanogaster identify putative binding sites for pyrethroids. Mol Pharmacol 64:914–922. doi: 10.1124/mol.64.4.914 CrossRefGoogle Scholar
  86. Wang F, Goulet RR, Chapman PM (2004) Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature. Chemosphere 57:1713–1724. doi: 10.1016/j.chemosphere.2004.07.050 CrossRefGoogle Scholar
  87. Werner I, Deanovic LA, Markiewicz D, Khamphanh M, Reece CK, Stillway M, Reece C (2010) Monitoring acute and chronic water column toxicity in the northern Sacramento-San Joaquin Estuary, California, USA, using the euryhaline amphipod, Hyalella azteca: 2006 to 2007. Environ Toxicol Chem 29:2190–2199. doi: 10.1002/etc.281 CrossRefGoogle Scholar
  88. Werner I, Moran K (2008) Effects of pyrethroid insecticides on aquatic organisms. ACS Symp Ser 991:310–334. doi: 10.1021/bk-2008-0991.ch014 CrossRefGoogle Scholar
  89. Weston DP, Asbell AM, Lesmeister SA, Teh SJ, Lydy MJ (2014) Urban and agricultural pesticide inputs to a critical habitat for the threatened delta smelt (Hypomesus transpacificus). Environ Toxicol Chem 33:920–929. doi: 10.1002/etc.2512 CrossRefGoogle Scholar
  90. Weston DP, Ding Y, Zhang M, Lydy MJ (2013a) Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere 90:958–964. doi: 10.1016/j.chemosphere.2012.06.039 CrossRefGoogle Scholar
  91. Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin delta of California. Environ Sci Technol 44:1833–1840. doi: 10.1021/es9035573 CrossRefGoogle Scholar
  92. Weston DP, Lydy MJ (2012) Stormwater input of pyrethroid insecticides to an urban river Environ Toxicol Chem:n/a-n/a. doi:  10.1002/etc.1847
  93. Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013b) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci U S A 110:16532–16537. doi: 10.1073/pnas.1302023110 CrossRefGoogle Scholar
  94. Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27:953–962. doi: 10.1897/07-449.1 CrossRefGoogle Scholar
  95. Wheelock CE et al (2005) Individual variability in esterase activity and cyp1a levels in chinook salmon (Oncorhynchus tshawyacha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol (Amsterdam) 74:172–192. doi: 10.1016/j.aquatox.2005.05.009 CrossRefGoogle Scholar
  96. Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (2002) Rapid genetic deterioration in captive populations: causes and conservation implications. Conserv Genet 3:277–288. doi: 10.1023/a:1019954801089 CrossRefGoogle Scholar
  97. Wouters W, van den Bercken J (1978) Action of pyrethroids. Gen Pharmacol 9:387–398CrossRefGoogle Scholar
  98. Xu Y, Spurlock F, Wang Z, Gan J (2007) Comparison of five methods for measuring sediment toxicity of hydrophobic contaminants. Environ Sci Technol 41:8394–8399. doi: 10.1021/es071911c CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Simone Hasenbein
    • 1
    • 2
  • Richard E. Connon
    • 1
  • Sharon P. Lawler
    • 3
  • Juergen Geist
    • 2
    Email author
  1. 1.Department of Anatomy, Physiology and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisUSA
  2. 2.Aquatic Systems Biology UnitTechnische Universität MünchenFreisingGermany
  3. 3.Department of Entomology and NematologyUniversity of CaliforniaDavisUSA

Personalised recommendations