Skip to main content
Log in

Removal of trimethylamine (fishy odor) by C3 and CAM plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

From screening 23 plant species, it was found that Pterocarpus indicus (C3) and Sansevieria trifasciata (crassulacean acid metabolism (CAM)) were the most effective in polar gaseous trimethylamine (TMA) uptake, reaching up to 90 % uptake of initial TMA (100 ppm) within 8 h, and could remove TMA at cycles 1–4 without affecting photosystem II (PSII) photochemistry. Up to 55 and 45 % of TMA was taken up by S. trifasciata stomata and leaf epicuticular wax, respectively. During cycles 1–4, interestingly, S. trifasciata changed its stomata apertures, which was directly induced by gaseous TMA and light treatments. In contrast, for P. indicus the leaf epicuticular wax and stem were the major pathways of TMA removal, followed by stomata; these pathways accounted for 46, 46, and 8 %, respectively, of TMA removal percentages. Fatty acids, particularly tetradecanoic (C14) acid and octadecanoic (C18) acid, were found to be the main cuticular wax components in both plants, and were associated with TMA removal ability. Moreover, the plants could degrade TMA via multiple metabolic pathways associated with carbon/nitrogen interactions. In CAM plants, one of the crucial pathways enabled 78 % of TMA to be transformed directly to dimethylamine (DMA) and methylamine (MA), which differed from C3 plant pathways. Various metabolites were also produced for further detoxification and mineralization so that TMA was completely degraded by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ACGIH (1991) Documentation of the threshold limit values and biological exposure indices (American Conference of Governmental Industrial Hygienists, ACGIH), 6th edn. Cincinnati, OH

    Google Scholar 

  • Aydogan A, Montoya LD (2011) Formaldehyde removal by common indoor plant species and various growing media. Atmos Environ 45:2675–2682

    Article  CAS  Google Scholar 

  • Bakker M, Baas W, Sijm D, Kollöffel C (1998) Extraction and identification of leaf wax of L. sativa and P. major. Phytochemistry 47:1489–1493

    Article  CAS  Google Scholar 

  • Ceusters J, Borland AM, Godts C, Londers E, Croonenborghs S, Goethem DV, De Proft MP (2011) Crassulacean acid metabolism under severe light limitation: a matter of plasticity in the shadows? J Exp Bot 62:283–291

    Article  CAS  Google Scholar 

  • Ceusters J, Borland AM, Taybi T, Frans M, Godts C, De Proft MP (2014) Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism. J Exp Bot. doi:10.1093/jxb/eru185

  • Chang CT, Chen BY, Shiu IS, Jeng FT (2004) Biofiltration of trimethylamine-containing waste gas by entrapped mixed microbial cells. Chemosphere 55:751–756

    Article  CAS  Google Scholar 

  • Chien YC, Uang SN, Kuo CT, Shih TS, Jen JF (2000) Analytical method for monitoring airborne trimethylamine using solid phase micro-extraction and gas chromatography-flame ionization detection. Anal Chim Acta 419:73–79

    Article  CAS  Google Scholar 

  • Colby J, Zatman LJ (1973) Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem J 132:101–112

    CAS  Google Scholar 

  • Cordeiro SZ, Simas NK, Arruda RCCO, Sato A (2011) Composition of epicuticular wax layer of two species of Mandevilla (Apocynoideae, Apocynaceae) from Rio de Janeiro, Brazil. Biochem Syst Ecol 39:198–202

    Article  CAS  Google Scholar 

  • Cruz MD, Müller R, Svensmark B, Pedersen JS, Christensen JH (2014) Assessment of volatile organic compound removal by indoor plants—a novel experimental setup. Environ Sci Pollut Res 21:7838–7846

    Article  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light‐dependent stomatal opening. J Exp Bot 52:1959–1967

    Article  CAS  Google Scholar 

  • US EPA (2005) Toxicological review of n-hexane. The United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Fagerström A, Kocherbitov V, Westbye P, Bergström K, Mamontova V, Engblom J (2013) Characterization of a plant leaf cuticle model wax, phase behaviour of model wax–water systems. Thermochim Acta 571:42–52

    Article  Google Scholar 

  • Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Plant Sci 28(1–2):36–68

    Article  Google Scholar 

  • Fernández-Escobar R, Antonaya-Baena MF, Sánchez-Zamora MA, Molina-Soria C (2014) The amount of nitrogen applied and nutritional status of olive plants affect nitrogen uptake efficiency. Sci Hort 167:1–4

    Article  Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. Soc Exp Biol 62(4):1467–1482

    CAS  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1991) The influence of nitrogen, light and water stress on CO2 exchange and organic acid accumulation in the tropical C3–CAM tree, Clusia minor. J Exp Bot 42(5):597–603

    Article  CAS  Google Scholar 

  • Grams TEE, Thiel S (2002) High light-induced switch from C3-photosynthesis to Crassulacean acid metabolism is mediated by UV-A/blue light. J Exp Bot 53:1475–1483

    Article  CAS  Google Scholar 

  • Guieysse B, Hort C, Platel V, Munoz R, Ondarts M, Revah S (2008) Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv 26:398–410

    Article  CAS  Google Scholar 

  • Hamamoto S, Uozumi N (2014) Organelle-localized potassium transport systems in plants. J Plant Physiol 171:743–747

    Article  CAS  Google Scholar 

  • Hodge DS, Devinny JS (1994) Biofilter treatment of ethanol vapors. Environ Prog 13(5):167–173

    Article  CAS  Google Scholar 

  • Hoshika Y, Omasa K, Paoletti E (2013) Both ozone exposure and soil water stress are able to induce stomatal sluggishness. Environ Exp Bot 88:19–23

    Article  CAS  Google Scholar 

  • Hu Y, Fernández V, Ma L (2014) Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide. Front Plant Sci. doi:10.3389/fpls.2014.00360

    Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In: Singh BK (ed) Plant amino acids, biochemistry and biotechnology. Marcel Dekker, New York, p 49–109

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    Article  CAS  Google Scholar 

  • Jetter R, Schaffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    Article  CAS  Google Scholar 

  • Juniper BE, Jeffree CE (1983) Plant surfaces. Edward Arnold, London, p 6

    Google Scholar 

  • Kachroo A, Robin GP (2013) Systemic signaling during plant defense. Curr Opin Plant Biol 16:527–533

    Article  CAS  Google Scholar 

  • Kim SJ, Bae HS, Lee ST (2001) A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways. Arch Microbiol 176(4):271–277

    Article  CAS  Google Scholar 

  • Kornas A, Schliebs EF, Lüttge U, Miszalski Z (2009) Adaptation of the obligate CAM plant Clusia alata to light stress: metabolic responses. J Plant Physiol 166:1914–1922

    Article  CAS  Google Scholar 

  • Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. World Acad Sci Eng Technol 31:454–464

    Google Scholar 

  • Lendzian KJ (2006) Survival strategies of plants during secondary growth: barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J Exp Bot 57(11):2535–2546

    Article  CAS  Google Scholar 

  • Leson G, Winer AM (1991) Biofiltration—an innovative air pollution control technology for VOC emission. J Air Waste Manage Assoc 41(11):1045–1054

    Article  CAS  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325

    Article  CAS  Google Scholar 

  • Lüttge U (2004) Ecophysiology of Crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  Google Scholar 

  • Martin JT, Juniper BE (1970) The cuticles of plants. Edward Arnold, Edinburgh

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  Google Scholar 

  • Miszalski Z, Kornas A, Rozpadek P, Fischer-Schliebs E, Lüttge U (2013) Independent fluctuations of malate and citrate in the CAM species Clusia hilariana Schltdl. under low light and high light in relation to photoprotection. J Plant Physiol 170:453–458

    Article  CAS  Google Scholar 

  • Muller TE, Hultzsch KC, Yus M, Foubelo F, Tada M (2008) Hydroamination: direct addition of amines to alkenes and alkynes. Chem Rev 108:3795–3892

    Article  Google Scholar 

  • Nelson M, Wolverton BC (2011) Plants + soil/wetland microbes: food crop systems that also clean air and water. Adv Space Res 47:582–590

    Article  CAS  Google Scholar 

  • NIOSH (1981) Occupational health guidelines for chemical hazards. DHHS National Institute for Occupational Safety and Health (NIOSH) Publication, Cincinnati, pp 81–123

    Google Scholar 

  • OSHA (1994) Occupational safety and health guideline for trimethylamine, computerized information system. U.S. Department of Labor, Washington, DC

    Google Scholar 

  • Pate JS (1973) Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol Biochem 5(1):109–119

    Article  CAS  Google Scholar 

  • Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480(7378):471–479

  • Percy KE, Manninen S, Häberle KH, Heerdt C, Werner H, Henderson GW, Matyssek R (2009) Effect of 3 years’ free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics. Environ Pollut 157:1657–1665

    Article  CAS  Google Scholar 

  • Samanta TD, Ghosh T, Laskar S (2013) Variation of hydrocarbon constituents of epicuticular wax of leaves of Litchi chinensis Sonn. South Pac J Nat Appl Sci 31:73–79

    Google Scholar 

  • Schonherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491

    Article  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: New evidence for an Old hypothesis. Ann Bot 95:1069–1073

    Article  Google Scholar 

  • Schreiber L, Schönherr J (2009) Water and solute permeability of plant cuticles. Springer-Verlag Berlin Heidelberg, Germany

    Google Scholar 

  • Seyyednejad SM, Koochak H (2013) Some morphological and biochemical responses due to industrial air pollution in Prosopis juliflora (Swartz) DC plant. Afr J Agric Res 8:1968–1974

    Google Scholar 

  • Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464

    Article  CAS  Google Scholar 

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Biorem Biodegrad 2:178–191

    Google Scholar 

  • Sharma T, Dreyer I, Riedelsberger J (2013) The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front Plant Sci 4:1–16

    Google Scholar 

  • Shieh WK, Keenan DJ (1986) Fluidized bed biofilm reactor for wastewater treatment. Adv Biochem Eng/Biotechnol 33(5):132–168

    Google Scholar 

  • Soreanu G, Dixon M, Darlington A (2013) Botanical biofiltration of indoor gaseous pollutants—a mini-review. Chem Eng J 229:585–594

    Article  CAS  Google Scholar 

  • Sriprapat W, Thiravetyan P (2013) Phytoremediation of BTEX from indoor air by Zamioculcas zamiifolia. Water Air Soil Pollut 224:1482

    Article  Google Scholar 

  • Sriprapat W, Boraphech P, Thiravetyan P (2014a) Factors affecting xylene-contaminated air removal by the ornamental plant Zamioculcas zamiifolia. Environ Sci Pollut Res 21:2603–2610

    Article  CAS  Google Scholar 

  • Sriprapat W, Suksabye P, Areephak S, Klantup P, Waraha A, Sawattan A, Thiravetyan P (2014b) Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants. Ecotoxicol Environ Saf 102:147–151

    Article  CAS  Google Scholar 

  • Szafranek B, Tomaszewski D, Pokrzywińska K, Gołębiowski M (2008) Microstructure and chemical composition of leaf cuticular waxes in two salix species and their hybrid. Acta Biol Cracov Bot 50(2):49–54

    Google Scholar 

  • Topp E, Scheunert I, Attar A, Korte F (1986) Factors affecting the uptake of C-14-labelled organic chemicals by plants from soil. Ecotoxicol Environ Saf 11:219–228

    Article  CAS  Google Scholar 

  • Treesubsuntorn C, Thiravetyan P (2012) Removal of benzene from indoor air by Dracaena sanderiana:eEffect of wax and stomata. Atmos Environ 57:317–321

    Article  CAS  Google Scholar 

  • Treesubsuntorn C, Suksabye P, Weangjun S, Pawana F, Thiravetyan P (2013) Benzene adsorption by plant leaf materials: effect of quantity and composition of wax. Water Air Soil Pollut 224:1736

  • Uscola M, Oliet JA, Villar-Salvador P, Díaz-Pinés E, Jacobs DF (2014a) Nitrogen form and concentration interact to affect the performance of two ecologically distinct Mediterranean forest trees. Eur J Forest Res 133:235–246

    Article  CAS  Google Scholar 

  • Uscola M, Villar-Salvador P, Oliet J, Warren CR (2014b) Foliar absorption and root translocation of nitrogen from different chemical forms in seedlings of two Mediterranean trees. Environ Exp Bot 104:34–43

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042

  • Walton TJ (1990) Wax, cutin and suberin. Methods Plant Biochem 4:105–158

    CAS  Google Scholar 

  • WHO (2004) Chloroform (Concise International Chemical Assessment Document 58). World Health Organization, 1211, Geneva 27, Switzerland

  • Wolverton BC, Wolverton JD (1993) Plants and soil microorganisms; removal of formaldehyde, xylene and ammonia from the indoor environment. J Miss Acad Sci 38:11–15

    Google Scholar 

  • Wolverton BC, McDonald RC, Watkins JE (1984) Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ Bot 38:224–228

    Article  CAS  Google Scholar 

  • Yang DS, Pennisi SV, Son KC, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. HortSci 44:1377–1381

    Google Scholar 

  • Yurimoto H, Kato N, Sakai Y (2005) Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Rec 5:367–375

    Article  CAS  Google Scholar 

  • Zhang L, Zhang C, Cheng Z, Yao Y, Chen J (2013) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90:1340–1347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program and King Mongkut’s University of Technology Thonburi for financially supporting Ms. Phattara Boraphech (grant No. PHD/0108/2553).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paitip Thiravetyan.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boraphech, P., Thiravetyan, P. Removal of trimethylamine (fishy odor) by C3 and CAM plants. Environ Sci Pollut Res 22, 11543–11557 (2015). https://doi.org/10.1007/s11356-015-4364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4364-3

Keywords

Navigation