Skip to main content
Log in

Dynamic of bacterial communities attached to lightened phytodetritus

  • Microbial Ecology of the Continental and Coastal Environments
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The effects of singlet oxygen (1O2) transfer to bacteria attached on phytodetritus were investigated under laboratory-controlled conditions. For this purpose, a nonaxenic culture of Emiliania huxleyi in late stationary phase was studied for bacterial viability. Our results indicated that only 9 ± 3 % of attached bacteria were alive compared to 46 ± 23 % for free bacteria in the E. huxleyi culture. Apparently, under conditions of low irradiance (36 W m−2), during the culture, the cumulative dose received (22,000 kJ m−2) was sufficiently important to induce an efficient 1O2 transfer to attached bacteria during the senescence of E. huxleyi cells. At this stage, attached bacteria appeared to be dominated by pigmented bacteria (Maribacter, Roseobacter, Roseovarius), which should resist to 1O2 stress probably due to their high contents of carotenoids. After subsequent irradiation of the culture until fully photodegradation of chlorophyll, DGGE analyses showed that the diversity of bacteria attached to E. huxleyi cells is modified by light. Photooxidative alterations of bacteria were confirmed by the increasing amounts of cis-vaccenic photoproducts (bacterial marker) per bacteria observed during irradiation time. Interestingly, preliminary chemotaxis experiments showed that Shewanella oneidensis considered here as a model of motile bacteria was attracted by phytodetritus producing or not 1O2. This lack of repulsive effects could explain the high mortality rate of bacteria measured on E. huxleyi cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abboudi M, Surget SM, Rontani J-F et al (2008) Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Curr Microbiol 57:412–417. doi:10.1007/s00284-008-9214-9

    Article  CAS  Google Scholar 

  • Abell GCJ, Bowman JP (2005) Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol 53:379–391. doi:10.1016/j.femsec.2005.01.008

    Article  CAS  Google Scholar 

  • Agnez-Lima LF, Di Mascio P, Napolitano R et al (1999) Mutation spectrum induced by singlet oxygen in Escherichia coli deficient in exonuclease III. Photochem Photobiol 70:505–511

    Article  CAS  Google Scholar 

  • Armitano J, Baraquet C, Michotey V et al (2011) The chemical-in-μwell: a high-throughput technique for identifying solutes eliciting a chemotactic response in motile bacteria. Res Microbiol 162:934–938. doi:10.1016/j.resmic.2011.03.001

    Article  CAS  Google Scholar 

  • Armitano J, Méjean V, Jourlin-Castelli C (2013) Aerotaxis governs floating biofilm formation in Shewanella oneidensis. Environ Microbiol 15:3108–3118. doi:10.1111/1462-2920.12158

    CAS  Google Scholar 

  • Azam F, Long RA (2001) Oceanography: sea snow microcosms. Nature 414:495–498

    Article  CAS  Google Scholar 

  • Bauer M, Kube M, Teeling H et al (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213. doi:10.1111/j.1462-2920.2006.01152.x

    Article  CAS  Google Scholar 

  • Blackburn N (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256. doi:10.1126/science.282.5397.2254

    Article  CAS  Google Scholar 

  • Bonin P, Michotey V, Mouzdahir A, Rontani J-F (2002) Anaerobic biodegradation of squalene: using DGGE to monitor the isolation of denitrifying bacteria taken from enrichment cultures. FEMS Microbiol Ecol 42:37–49. doi:10.1111/j.1574-6941.2002.tb00993.x

    Article  CAS  Google Scholar 

  • Cammen LM, Walker JA (1982) Distribution and activity of attached and free-living suspended bacteria in the bay of Fundy. Can J Fish Aquat Sci 39:1655–1663. doi:10.1139/f82-223

    Article  Google Scholar 

  • Choi K-H, Lee H-J, Park BJ et al (2012) Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chem Commun 48:4591–4593. doi:10.1039/C2CC17766H

    Article  CAS  Google Scholar 

  • Christodoulou S, Joux F, Marty J-C et al (2010) Comparative study of UV and visible light induced degradation of lipids in non-axenic senescent cells of Emiliania huxleyi. Mar Chem 119:139–152. doi:10.1016/j.marchem.2010.01.007

    Article  CAS  Google Scholar 

  • Christodoulou S, Marty J-C, Miquel J-C et al (2009) Use of lipids and their degradation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea. Mar Chem 113:25–40

    Article  CAS  Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    CAS  Google Scholar 

  • Cuny P, Romano J-C, Beker B, Rontani J-F (1999) Comparison of the photodegradation rates of chlorophyll chlorin ring and phytol side chain in phytodetritus: is the phytyldiol versus phytol ratio (CPPI) a new biogeochemical index? J Exp Mar Biol Ecol 237:271–290. doi:10.1016/S0022-0981(99)00010-6

    Article  CAS  Google Scholar 

  • Di Mascio P, Medeiros MHG, Sies H et al (1997) Quenching of singlet molecular oxygen by natural furan diterpenes. J Photobiol B Biol 38:169–173

    Article  Google Scholar 

  • Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. Free Radic Biol 2:85–131

    CAS  Google Scholar 

  • Frimer AA (1979) The reaction of singlet oxygen with olefins: the question of mechanism. Chem Rev 79:359–387. doi:10.1021/cr60321a001

    Article  CAS  Google Scholar 

  • Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  • Ghiglione JF, Mevel G, Pujo-Pay M et al (2007) Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb Ecol 54:217–231

    Article  CAS  Google Scholar 

  • Glaeser SP, Grossart H-P, Glaeser J (2010) Singlet oxygen, a neglected but important environmental factor: short-term and long-term effects on bacterioplankton composition in a humic lake. Environ Microbiol 12:3124–3136. doi:10.1111/j.1462-2920.2010.02285.x

    Article  CAS  Google Scholar 

  • Gollnick K, Griesbeck A (1985) Singlet oxygen photooxygenation of furans : isolation and reactions of (4+2)-cycloaddition products (unsaturated sec.-ozonides). Tetrahedron 41:2057–2068. doi:10.1016/S0040-4020(01)96576-7

    Article  CAS  Google Scholar 

  • Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. ICES J Mar Sci 30:3–15. doi:10.1093/icesjms/30.1.3

    Article  CAS  Google Scholar 

  • Jiao N, Zhang Y, Zeng Y et al (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099. doi:10.1111/j.1462-2920.2007.01419.x

    Article  CAS  Google Scholar 

  • Kim H-S, Zhang C, Lee J-H et al (2014) Evaluation of the biological activities of marine bacteria collected from Jeju Island, Korea, and isolation of active compounds from their secondary metabolites. Fish Aquat Sci 17:215–222. doi:10.5657/FAS.2014.0215

    CAS  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100. doi:10.1111/j.1574-6941.2002.tb00910.x

    CAS  Google Scholar 

  • Kolber ZS, van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 1878:177–179

    Google Scholar 

  • Marchand D, Marty J-C, Miquel J-C, Rontani J-F (2005) Lipids and their oxidation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea: results from a sediment trap study. Mar Chem 95:129–147

    Article  CAS  Google Scholar 

  • Marchand D, Rontani J-F (2001) Characterisation of photo-oxidation and autoxidation products of phytoplanktonic monounsaturated fatty acids in marine particulate matter and recent sediments. Org Geochem 32:287–304

    Article  CAS  Google Scholar 

  • Marchand D, Rontani J-F (2003) Visible light-induced oxidation of lipid components of purple sulfur bacteria: a significant process in microbial mats. Org Geochem 34:61–79. doi:10.1016/S0146-6380(02)00192-4

    Article  CAS  Google Scholar 

  • Marker AFH (1972) The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biol 2:361–385. doi:10.1111/j.1365-2427.1972.tb00377.x

    Article  Google Scholar 

  • Merchat M, Bertolini G, Giacomini P et al (1996a) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B 32:153–157

    Article  CAS  Google Scholar 

  • Merchat M, Spikes JD, Bertoloni G, Jori G (1996b) Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J Photochem Photobiol B 35:149–157

    Article  CAS  Google Scholar 

  • Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59:284–289. doi:10.1111/j.1751-1097.1994.tb05035.x

    Article  CAS  Google Scholar 

  • Michotey V, Guasco S, Boeuf D et al (2012) Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters. Mar Pollut Bull 65:525–537. doi:10.1016/j.marpolbul.2012.01.009

    Article  CAS  Google Scholar 

  • Minnock A, Vernon D, Schofield J (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B 32:159–164

    Article  CAS  Google Scholar 

  • Morgan PE, Dean RT, Davies MJ (2004) Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Free Radic Biol Med 36:484–496. doi:10.1016/j.freeradbiomed.2003.11.021

    Article  CAS  Google Scholar 

  • Nedashkovskaya OI, Kim SB, Han SK et al (2004) Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54:1017–1023. doi:10.1099/ijs. 0.02849-0

    Article  CAS  Google Scholar 

  • Ogilby PR (2010) Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 39:3181–3209. doi:10.1039/B926014P

    Article  CAS  Google Scholar 

  • Pedrós-Alió C, Brock TD (1983) The importance of attachment to particles for planktonic bacteria. Arch Hydrobiol 98:354–379

    Google Scholar 

  • Pedrotti M, Beauvais S, Kerros M et al (2009) Bacterial colonization of transparent exopolymeric particles in mesocosms under different turbulence intensities and nutrient conditions. Aquat Microb Ecol 55:301–312. doi:10.3354/ame01308

    Article  Google Scholar 

  • Petit M, Sempéré R, Vaultier F, Rontani J-F (2013) Transfer of photooxidative processes from senescent phytoplankton cells to attached bacteria: formation and behavior of cis-vaccenic photoproducts. Int J Mol Sci 14:11795–11815

    Article  Google Scholar 

  • Pierce AE (1982) Silylation of organic compounds. Rockford, Illinois

  • Pokorny J (1987) Major factors affecting the autoxidation of lipids. Autoxid Unsaturated Lipids 141–206

  • Pond DW, Harris RP (1996) The lipid composition of the coccolithophore Emiliania huxleyi and its possible ecophysiological significance. J Mar Biol Assoc U K 76:579–594

    Article  CAS  Google Scholar 

  • Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chainketone compositions for palaeotemperature assessment. Nature 330:367–369

    Article  CAS  Google Scholar 

  • Ravanat J-L, Di Mascio P, Martinez GR et al (2000) Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 275:40601–40604. doi:10.1074/jbc.M006681200

    Article  CAS  Google Scholar 

  • Rontani J-F (2001) Visible light-dependent degradation of lipidic phytoplanktonic components during senescence: a review. Phytochemistry 58:187–202

    Article  CAS  Google Scholar 

  • Rontani J-F, Christodoulou S, Koblizek M (2005a) GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108

    Article  CAS  Google Scholar 

  • Rontani J-F, Koblízek M, Beker B et al (2003) On the origin of cis-vaccenic acid photodegradation products in the marine environment. Lipids 38:1085–1092

    Article  CAS  Google Scholar 

  • Rontani J-F, Rabourdin A, Pinot F et al (2005b) Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants. Phytochemistry 66:313–321. doi:10.1016/j.phytochem.2004.12.015

    Article  CAS  Google Scholar 

  • Rontani J-F, Zabeti N, Wakeham SG (2011) Degradation of particulate organic matter in the equatorial Pacific Ocean: biotic or abiotic? Limnol Oceanogr 56:333–349. doi:10.4319/lo.2011.56.1.0333

    Article  CAS  Google Scholar 

  • Rudi K, Moen B, Drømtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024. doi:10.1128/AEM.71.2.1018

    Article  CAS  Google Scholar 

  • Sapp M, Schwaderer AS, Wiltshire KH et al (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699. doi:10.1007/s00248-006-9162-5

    Article  Google Scholar 

  • Seymour JR, Ahmed T, Stocker R (2009) Bacterial chemotaxis towards the extracellular products of the toxic phytoplankton Heterosigma akashiwo. J Plankton Res 31:1557–1561. doi:10.1093/plankt/fbp093

    Article  CAS  Google Scholar 

  • Shirasaka N, Nishi K, Shimizu S (1997) Biosynthesis of furan fatty acids (F-acids) by a marine bacterium, Shewanella putrefaciens. Biochim Biophys Acta 1346:253–260

    Article  CAS  Google Scholar 

  • Sicre MA, Paillasseur J, Marty J-C, Saliot A (1988) Characterization of seawater samples using chemometric methods applied to biomarker fatty acids. Org Geochem 12:281–288. doi:10.1016/0146-6380(88)90265-3

    Article  CAS  Google Scholar 

  • Sies H, Menck CFM (1992) Singlet oxygen induced DNA damage. Mutat Res 275:367–375. doi:10.1016/0921-8734(92)90039-R

    Article  CAS  Google Scholar 

  • Simon M, Glockner FO, Amann R (1999) Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat Microb Ecol 18:275–284

    Article  Google Scholar 

  • Sonnenschein EC, Syit DA, Grossart H-P, Ullrich MS (2012) Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl Environ Microbiol 78:6900–6907. doi:10.1128/AEM. 01790-12

    Article  CAS  Google Scholar 

  • Spikes JD, MacKnight ML (1970) Dye-sensitized photooxidation of proteins. Ann N Y Acad Sci 171:149–162. doi:10.1111/j.1749-6632.1970.tb39319.x

    Article  CAS  Google Scholar 

  • Spiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:755–771. doi:10.1007/s11745-005-1438-5

    Article  CAS  Google Scholar 

  • Suzuki M, Preston C, Chavez F, DeLong E (2001) Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat Microb Ecol 24:117–127. doi:10.3354/ame024117

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Woebken D, Teeling H, Wecker P et al (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1:419–435. doi:10.1038/ismej.2007.63

    Article  CAS  Google Scholar 

  • Yoon J, Kang S, Oh T (2008) Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 58:1198–1202. doi:10.1099/ijs. 0.65657-0

    Article  CAS  Google Scholar 

  • Zabeti N, Bonin P, Volkman JK et al (2010a) Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org Geochem 41:627–636. doi:10.1016/j.orggeochem.2010.04.009

    Article  CAS  Google Scholar 

  • Zabeti N, Bonin P, Volkman JK, Jameson I, Guasco Sand Rontani J-F (2010b) Potential alteration of paleothermometer due to selective degradation of alkenones by marine bacteria isolated from the haptophyte Emiliania huxleyi. FEMS Microbiol Ecol 73:83–94

    CAS  Google Scholar 

  • Zubkov MV, Fuchs BM, Tarran GA et al (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69:1299–1304. doi:10.1128/AEM.69.2.1299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the framework of the transverse axis DEBAT of the MIO and funded by research grants from the PHOTOMED (MERMEX/MISTRALS WP4) and TRANSPHYTOBAC (EC2CO-Microbien) research projects. The PhD scholarship for MP was provided by Aix Marseille University (EDSV 251) and the Ministry of Research and Technology. Thanks are due to two anonymous reviewers for their useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Bonin.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, M., Bonin, P., Amiraux, R. et al. Dynamic of bacterial communities attached to lightened phytodetritus. Environ Sci Pollut Res 22, 13681–13692 (2015). https://doi.org/10.1007/s11356-015-4209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4209-0

Keywords

Navigation