Environmental Science and Pollution Research

, Volume 22, Issue 18, pp 13681–13692 | Cite as

Dynamic of bacterial communities attached to lightened phytodetritus

  • Morgan Petit
  • Patricia Bonin
  • Rémi Amiraux
  • Valérie Michotey
  • Sophie Guasco
  • Joshua Armitano
  • Cécile Jourlin-Castelli
  • Frédéric Vaultier
  • Vincent Méjean
  • Jean-François Rontani
Microbial Ecology of the Continental and Coastal Environments

Abstract

The effects of singlet oxygen (1O2) transfer to bacteria attached on phytodetritus were investigated under laboratory-controlled conditions. For this purpose, a nonaxenic culture of Emiliania huxleyi in late stationary phase was studied for bacterial viability. Our results indicated that only 9 ± 3 % of attached bacteria were alive compared to 46 ± 23 % for free bacteria in the E. huxleyi culture. Apparently, under conditions of low irradiance (36 W m−2), during the culture, the cumulative dose received (22,000 kJ m−2) was sufficiently important to induce an efficient 1O2 transfer to attached bacteria during the senescence of E. huxleyi cells. At this stage, attached bacteria appeared to be dominated by pigmented bacteria (Maribacter, Roseobacter, Roseovarius), which should resist to 1O2 stress probably due to their high contents of carotenoids. After subsequent irradiation of the culture until fully photodegradation of chlorophyll, DGGE analyses showed that the diversity of bacteria attached to E. huxleyi cells is modified by light. Photooxidative alterations of bacteria were confirmed by the increasing amounts of cis-vaccenic photoproducts (bacterial marker) per bacteria observed during irradiation time. Interestingly, preliminary chemotaxis experiments showed that Shewanella oneidensis considered here as a model of motile bacteria was attracted by phytodetritus producing or not 1O2. This lack of repulsive effects could explain the high mortality rate of bacteria measured on E. huxleyi cells.

Keywords

Singlet oxygen Attached bacteria Photodegradation Phytodetritus Furan AAnP 

References

  1. Abboudi M, Surget SM, Rontani J-F et al (2008) Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Curr Microbiol 57:412–417. doi:10.1007/s00284-008-9214-9 CrossRefGoogle Scholar
  2. Abell GCJ, Bowman JP (2005) Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol 53:379–391. doi:10.1016/j.femsec.2005.01.008 CrossRefGoogle Scholar
  3. Agnez-Lima LF, Di Mascio P, Napolitano R et al (1999) Mutation spectrum induced by singlet oxygen in Escherichia coli deficient in exonuclease III. Photochem Photobiol 70:505–511CrossRefGoogle Scholar
  4. Armitano J, Baraquet C, Michotey V et al (2011) The chemical-in-μwell: a high-throughput technique for identifying solutes eliciting a chemotactic response in motile bacteria. Res Microbiol 162:934–938. doi:10.1016/j.resmic.2011.03.001 CrossRefGoogle Scholar
  5. Armitano J, Méjean V, Jourlin-Castelli C (2013) Aerotaxis governs floating biofilm formation in Shewanella oneidensis. Environ Microbiol 15:3108–3118. doi:10.1111/1462-2920.12158 Google Scholar
  6. Azam F, Long RA (2001) Oceanography: sea snow microcosms. Nature 414:495–498CrossRefGoogle Scholar
  7. Bauer M, Kube M, Teeling H et al (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213. doi:10.1111/j.1462-2920.2006.01152.x CrossRefGoogle Scholar
  8. Blackburn N (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256. doi:10.1126/science.282.5397.2254 CrossRefGoogle Scholar
  9. Bonin P, Michotey V, Mouzdahir A, Rontani J-F (2002) Anaerobic biodegradation of squalene: using DGGE to monitor the isolation of denitrifying bacteria taken from enrichment cultures. FEMS Microbiol Ecol 42:37–49. doi:10.1111/j.1574-6941.2002.tb00993.x CrossRefGoogle Scholar
  10. Cammen LM, Walker JA (1982) Distribution and activity of attached and free-living suspended bacteria in the bay of Fundy. Can J Fish Aquat Sci 39:1655–1663. doi:10.1139/f82-223 CrossRefGoogle Scholar
  11. Choi K-H, Lee H-J, Park BJ et al (2012) Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chem Commun 48:4591–4593. doi:10.1039/C2CC17766H CrossRefGoogle Scholar
  12. Christodoulou S, Joux F, Marty J-C et al (2010) Comparative study of UV and visible light induced degradation of lipids in non-axenic senescent cells of Emiliania huxleyi. Mar Chem 119:139–152. doi:10.1016/j.marchem.2010.01.007 CrossRefGoogle Scholar
  13. Christodoulou S, Marty J-C, Miquel J-C et al (2009) Use of lipids and their degradation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea. Mar Chem 113:25–40CrossRefGoogle Scholar
  14. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204Google Scholar
  15. Cuny P, Romano J-C, Beker B, Rontani J-F (1999) Comparison of the photodegradation rates of chlorophyll chlorin ring and phytol side chain in phytodetritus: is the phytyldiol versus phytol ratio (CPPI) a new biogeochemical index? J Exp Mar Biol Ecol 237:271–290. doi:10.1016/S0022-0981(99)00010-6 CrossRefGoogle Scholar
  16. Di Mascio P, Medeiros MHG, Sies H et al (1997) Quenching of singlet molecular oxygen by natural furan diterpenes. J Photobiol B Biol 38:169–173CrossRefGoogle Scholar
  17. Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. Free Radic Biol 2:85–131Google Scholar
  18. Frimer AA (1979) The reaction of singlet oxygen with olefins: the question of mechanism. Chem Rev 79:359–387. doi:10.1021/cr60321a001 CrossRefGoogle Scholar
  19. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  20. Ghiglione JF, Mevel G, Pujo-Pay M et al (2007) Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb Ecol 54:217–231CrossRefGoogle Scholar
  21. Glaeser SP, Grossart H-P, Glaeser J (2010) Singlet oxygen, a neglected but important environmental factor: short-term and long-term effects on bacterioplankton composition in a humic lake. Environ Microbiol 12:3124–3136. doi:10.1111/j.1462-2920.2010.02285.x CrossRefGoogle Scholar
  22. Gollnick K, Griesbeck A (1985) Singlet oxygen photooxygenation of furans : isolation and reactions of (4+2)-cycloaddition products (unsaturated sec.-ozonides). Tetrahedron 41:2057–2068. doi:10.1016/S0040-4020(01)96576-7 CrossRefGoogle Scholar
  23. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. ICES J Mar Sci 30:3–15. doi:10.1093/icesjms/30.1.3 CrossRefGoogle Scholar
  24. Jiao N, Zhang Y, Zeng Y et al (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099. doi:10.1111/j.1462-2920.2007.01419.x CrossRefGoogle Scholar
  25. Kim H-S, Zhang C, Lee J-H et al (2014) Evaluation of the biological activities of marine bacteria collected from Jeju Island, Korea, and isolation of active compounds from their secondary metabolites. Fish Aquat Sci 17:215–222. doi:10.5657/FAS.2014.0215 Google Scholar
  26. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100. doi:10.1111/j.1574-6941.2002.tb00910.x Google Scholar
  27. Kolber ZS, van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 1878:177–179Google Scholar
  28. Marchand D, Marty J-C, Miquel J-C, Rontani J-F (2005) Lipids and their oxidation products as biomarkers for carbon cycling in the northwestern Mediterranean Sea: results from a sediment trap study. Mar Chem 95:129–147CrossRefGoogle Scholar
  29. Marchand D, Rontani J-F (2001) Characterisation of photo-oxidation and autoxidation products of phytoplanktonic monounsaturated fatty acids in marine particulate matter and recent sediments. Org Geochem 32:287–304CrossRefGoogle Scholar
  30. Marchand D, Rontani J-F (2003) Visible light-induced oxidation of lipid components of purple sulfur bacteria: a significant process in microbial mats. Org Geochem 34:61–79. doi:10.1016/S0146-6380(02)00192-4 CrossRefGoogle Scholar
  31. Marker AFH (1972) The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biol 2:361–385. doi:10.1111/j.1365-2427.1972.tb00377.x CrossRefGoogle Scholar
  32. Merchat M, Bertolini G, Giacomini P et al (1996a) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B 32:153–157CrossRefGoogle Scholar
  33. Merchat M, Spikes JD, Bertoloni G, Jori G (1996b) Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J Photochem Photobiol B 35:149–157CrossRefGoogle Scholar
  34. Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59:284–289. doi:10.1111/j.1751-1097.1994.tb05035.x CrossRefGoogle Scholar
  35. Michotey V, Guasco S, Boeuf D et al (2012) Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters. Mar Pollut Bull 65:525–537. doi:10.1016/j.marpolbul.2012.01.009 CrossRefGoogle Scholar
  36. Minnock A, Vernon D, Schofield J (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B 32:159–164CrossRefGoogle Scholar
  37. Morgan PE, Dean RT, Davies MJ (2004) Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Free Radic Biol Med 36:484–496. doi:10.1016/j.freeradbiomed.2003.11.021 CrossRefGoogle Scholar
  38. Nedashkovskaya OI, Kim SB, Han SK et al (2004) Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54:1017–1023. doi:10.1099/ijs. 0.02849-0 CrossRefGoogle Scholar
  39. Ogilby PR (2010) Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 39:3181–3209. doi:10.1039/B926014P CrossRefGoogle Scholar
  40. Pedrós-Alió C, Brock TD (1983) The importance of attachment to particles for planktonic bacteria. Arch Hydrobiol 98:354–379Google Scholar
  41. Pedrotti M, Beauvais S, Kerros M et al (2009) Bacterial colonization of transparent exopolymeric particles in mesocosms under different turbulence intensities and nutrient conditions. Aquat Microb Ecol 55:301–312. doi:10.3354/ame01308 CrossRefGoogle Scholar
  42. Petit M, Sempéré R, Vaultier F, Rontani J-F (2013) Transfer of photooxidative processes from senescent phytoplankton cells to attached bacteria: formation and behavior of cis-vaccenic photoproducts. Int J Mol Sci 14:11795–11815CrossRefGoogle Scholar
  43. Pierce AE (1982) Silylation of organic compounds. Rockford, IllinoisGoogle Scholar
  44. Pokorny J (1987) Major factors affecting the autoxidation of lipids. Autoxid Unsaturated Lipids 141–206Google Scholar
  45. Pond DW, Harris RP (1996) The lipid composition of the coccolithophore Emiliania huxleyi and its possible ecophysiological significance. J Mar Biol Assoc U K 76:579–594CrossRefGoogle Scholar
  46. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chainketone compositions for palaeotemperature assessment. Nature 330:367–369CrossRefGoogle Scholar
  47. Ravanat J-L, Di Mascio P, Martinez GR et al (2000) Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 275:40601–40604. doi:10.1074/jbc.M006681200 CrossRefGoogle Scholar
  48. Rontani J-F (2001) Visible light-dependent degradation of lipidic phytoplanktonic components during senescence: a review. Phytochemistry 58:187–202CrossRefGoogle Scholar
  49. Rontani J-F, Christodoulou S, Koblizek M (2005a) GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108CrossRefGoogle Scholar
  50. Rontani J-F, Koblízek M, Beker B et al (2003) On the origin of cis-vaccenic acid photodegradation products in the marine environment. Lipids 38:1085–1092CrossRefGoogle Scholar
  51. Rontani J-F, Rabourdin A, Pinot F et al (2005b) Visible light-induced oxidation of unsaturated components of cutins: a significant process during the senescence of higher plants. Phytochemistry 66:313–321. doi:10.1016/j.phytochem.2004.12.015 CrossRefGoogle Scholar
  52. Rontani J-F, Zabeti N, Wakeham SG (2011) Degradation of particulate organic matter in the equatorial Pacific Ocean: biotic or abiotic? Limnol Oceanogr 56:333–349. doi:10.4319/lo.2011.56.1.0333 CrossRefGoogle Scholar
  53. Rudi K, Moen B, Drømtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024. doi:10.1128/AEM.71.2.1018 CrossRefGoogle Scholar
  54. Sapp M, Schwaderer AS, Wiltshire KH et al (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53:683–699. doi:10.1007/s00248-006-9162-5 CrossRefGoogle Scholar
  55. Seymour JR, Ahmed T, Stocker R (2009) Bacterial chemotaxis towards the extracellular products of the toxic phytoplankton Heterosigma akashiwo. J Plankton Res 31:1557–1561. doi:10.1093/plankt/fbp093 CrossRefGoogle Scholar
  56. Shirasaka N, Nishi K, Shimizu S (1997) Biosynthesis of furan fatty acids (F-acids) by a marine bacterium, Shewanella putrefaciens. Biochim Biophys Acta 1346:253–260CrossRefGoogle Scholar
  57. Sicre MA, Paillasseur J, Marty J-C, Saliot A (1988) Characterization of seawater samples using chemometric methods applied to biomarker fatty acids. Org Geochem 12:281–288. doi:10.1016/0146-6380(88)90265-3 CrossRefGoogle Scholar
  58. Sies H, Menck CFM (1992) Singlet oxygen induced DNA damage. Mutat Res 275:367–375. doi:10.1016/0921-8734(92)90039-R CrossRefGoogle Scholar
  59. Simon M, Glockner FO, Amann R (1999) Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat Microb Ecol 18:275–284CrossRefGoogle Scholar
  60. Sonnenschein EC, Syit DA, Grossart H-P, Ullrich MS (2012) Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl Environ Microbiol 78:6900–6907. doi:10.1128/AEM. 01790-12 CrossRefGoogle Scholar
  61. Spikes JD, MacKnight ML (1970) Dye-sensitized photooxidation of proteins. Ann N Y Acad Sci 171:149–162. doi:10.1111/j.1749-6632.1970.tb39319.x CrossRefGoogle Scholar
  62. Spiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:755–771. doi:10.1007/s11745-005-1438-5 CrossRefGoogle Scholar
  63. Suzuki M, Preston C, Chavez F, DeLong E (2001) Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat Microb Ecol 24:117–127. doi:10.3354/ame024117 CrossRefGoogle Scholar
  64. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  65. Woebken D, Teeling H, Wecker P et al (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1:419–435. doi:10.1038/ismej.2007.63 CrossRefGoogle Scholar
  66. Yoon J, Kang S, Oh T (2008) Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 58:1198–1202. doi:10.1099/ijs. 0.65657-0 CrossRefGoogle Scholar
  67. Zabeti N, Bonin P, Volkman JK et al (2010a) Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org Geochem 41:627–636. doi:10.1016/j.orggeochem.2010.04.009 CrossRefGoogle Scholar
  68. Zabeti N, Bonin P, Volkman JK, Jameson I, Guasco Sand Rontani J-F (2010b) Potential alteration of paleothermometer due to selective degradation of alkenones by marine bacteria isolated from the haptophyte Emiliania huxleyi. FEMS Microbiol Ecol 73:83–94Google Scholar
  69. Zubkov MV, Fuchs BM, Tarran GA et al (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69:1299–1304. doi:10.1128/AEM.69.2.1299 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Morgan Petit
    • 1
  • Patricia Bonin
    • 1
  • Rémi Amiraux
    • 1
  • Valérie Michotey
    • 1
  • Sophie Guasco
    • 1
  • Joshua Armitano
    • 2
  • Cécile Jourlin-Castelli
    • 2
  • Frédéric Vaultier
    • 1
  • Vincent Méjean
    • 2
  • Jean-François Rontani
    • 1
  1. 1.Aix-Marseille Université, Mediterranean Institute of Oceanography (MIO), Université du Sud Toulon-Var, 83957, CNRS-INSU/IRD UM 110MarseilleFrance
  2. 2.Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR7281, Institut de Microbiologie de la MéditerranéeMarseilleFrance

Personalised recommendations