Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 9, pp 6511–6525 | Cite as

Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change

  • João M. Jesus
  • Anthony S. DankoEmail author
  • António Fiúza
  • Maria-Teresa Borges
Review Article

Abstract

Soil salinization affects 1–10 billion ha worldwide, threatening the agricultural production needed to feed the ever increasing world population. Phytoremediation may be a cost-effective option for the remediation of these soils. This review analyzes the viability of using phytoremediation for salt-affected soils and explores the remedial mechanisms involved. In addition, it specifically addresses the debate over plant indirect (via soil cation exchange enhancement) or direct (via uptake) role in salt remediation. Analysis of experimental data for electrical conductivity (ECe) + sodium adsorption ratio (SAR) reduction and plant salt uptake showed a similar removal efficiency between salt phytoremediation and other treatment options, with the added potential for phytoextraction under non-leaching conditions. A focus is also given on recent studies that indicate potential pathways for increased salt phytoextraction, co-treatment with other contaminants, and phytoremediation applicability for salt flow control. Finally, this work also details the predicted effects of climate change on soil salinization and on treatment options. The synergetic effects of extreme climate events and salinization are a challenging obstacle for future phytoremediation applications, which will require additional and multi-disciplinary research efforts.

Keywords

Phytoremediation Saline soils Salt-affected soils Phytoextraction Climate change 

Notes

Acknowledgments

The authors would like to acknowledge the Portuguese Science and Technology Foundation (FCT) for the PhD grant (FCT-DFRH-SFRH/BD/84750/2012) and the Ciência 2008 program.

References

  1. Abd Elrahman SH, Mostafa MAM, Taha TA, Elsharawy MAO, Eid MA (2012) Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Ann Agric Sci 57:175–182. doi: 10.1016/j.aoas.2012.09.001 Google Scholar
  2. Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic-Amsterdam 127:228–233. doi: 10.1016/j.scienta.2010.09.020 Google Scholar
  3. Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822. doi: 10.1016/j.biombioe.2011.01.023 Google Scholar
  4. Ahmad S, Ghafoor A, Akhtar ME, Khan MZ (2011) Ionic displacement and reclamation of saline-sodic soils using chemical amendments and crop rotation. Land Degrad Dev 24:170–178. doi: 10.1002/ldr.1117 Google Scholar
  5. Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216. doi: 10.1023/B:PLSO.0000016551.08880.6b Google Scholar
  6. Al Khamisi SA, Prathapar SA, Ahmed M (2013) Conjunctive use of reclaimed water and groundwater in crop rotations. Agric Water Manage 116:228–234. doi: 10.1016/j.agwat.2012.07.013 Google Scholar
  7. Al-Tabbaa A, Smith S, Munck CD, Dixon T, Doak J, Garvin S, Raco M (2008) Climate change, pollutant linkage and brownfield regeneration. In: Sustainable Brownfield regeneration. Blackwell Publishing Ltd, pp 263–314. doi: 10.1002/9780470692110.ch11
  8. Ammari T, Tahboub AB, Saoub HM, Hattar BI, Al-Zubi YA (2008) Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agric Environ 6:456–460Google Scholar
  9. Ammari TG, Al-Hiary Si, Al-Dabbas M (2011) Reclamation of saline calcareous soils using vegetative bioremediation as a potential approach. Arch Agron Soil Sci:1–9 doi: 10.1080/03650340.2011.629813
  10. Anawar HM (2013) Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas. Phys Chem Earth 58–60:13–21. doi: 10.1016/j.pce.2013.04.002 Google Scholar
  11. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254. doi: 10.1016/j.febslet.2007.04.014 Google Scholar
  12. Aslam R, Bostan N, Nabgha-e A, Maria M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118. doi: 10.5897/JMPRx11.009 Google Scholar
  13. Aydemir S, Sünger H (2011) Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline sodic soil. Afr J Biotechnol 10:115571–115577Google Scholar
  14. Barrett-Lennard EG, Shabala SN (2013) The waterlogging/salinity interaction in higher plants revisited—focusing on the hypoxia-induced disturbance to K+ homeostasis. Funct Plant Biol 40:872–882. doi: 10.1071/FP12235 Google Scholar
  15. Bhavanath J, Avinash M, Anupama J, Mukul J (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8 doi: 10.1371/journal.pone.0071136
  16. Boonsaner M, Hawker DW (2012) Remediation of saline soil from shrimp farms by three different plants including soybean (Glycine max (L.) Merr.). J Environ Sci Health Part A Environ Sci Eng 47:558–564. doi: 10.1080/10934529.2012.650559 Google Scholar
  17. Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Chang Biol 16:1576–1588. doi: 10.1111/j.1365-2486.2009.02040.x Google Scholar
  18. Calheiros CSC, Quitério PVB, Silva G, Crispim LFC, Brix H, Moura SC, Castro PML (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manag 95:66–71. doi: 10.1016/j.jenvman.2011.10.003 Google Scholar
  19. Caravaca F, Alguacil MM, Torres P, Roldán A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375–382. doi: 10.1016/j.geoderma.2004.05.010 Google Scholar
  20. Carter JL, Colmer TD, Veneklaas EJ (2006) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytol 169:123–134. doi: 10.1111/j.1469-8137.2005.01552.x Google Scholar
  21. Cartmill AD, Valdez-Aguilar LA, Cartmill DL, Volder A, Alarcón A (2012) Arbuscular mycorrhizal colonization does not alleviate sodium chloride-salinity stress in vinca [Catharanthus Roseus (l.) g. don]. J Plant Nutr 36:164–178. doi: 10.1080/01904167.2012.738275 Google Scholar
  22. Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD, Greenberg BM (2013) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytorem 16:1133–1147. doi: 10.1080/15226514.2013.821447 Google Scholar
  23. Chondraki S, Tzerakis C, Tzortzakis N (2012) Influence of sodium chloride and calcium foliar spray on hydroponically grown parsley in nutrient film technique system. J Plant Nutr 35:1457–1467. doi: 10.1080/01904167.2012.689906 Google Scholar
  24. Crosbie RS, Wilson B, Hughes JD, McCulloch C, King WM (2008) A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW, Australia. Agric Water Manag 95:211–223. doi: 10.1016/j.agwat.2007.10.015 Google Scholar
  25. Daily M (2005) Investigation and remediation of salt (chloride)-impacted soil and ground water. Bur Environ Remediat Remedial Sect:8Google Scholar
  26. de-Bashan LE, Hernandez J-P, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189. doi: 10.1016/j.apsoil.2011.09.003 Google Scholar
  27. Diamantis VI, Voudrias EA (2008) Laboratory and pilot studies on reclamation of a salt-affected alluvial soil. Environ Geol 54:643–651. doi: 10.1007/s00254-007-0835-2 Google Scholar
  28. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428. doi: 10.1093/jxb/ers033 Google Scholar
  29. Dragovich D, Dominis M (2008) Dryland salinity and rainfall patterns: a preliminary investigation in central west New South Wales (Australia). Land Degrad Dev 19:564–573. doi: 10.1002/ldr.866 Google Scholar
  30. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280. doi: 10.1093/aob/mcp251 Google Scholar
  31. Gamalero E, Berta G, Glick B (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin Heidelberg, pp 1–22. doi: 10.1007/978-3-642-01979-1_1 Google Scholar
  32. Ghafoor A, Murtaza G, Rehman MZ, Saifullah SM (2012) Reclamation and salt leaching efficiency for tile drained saline-sodic soil using marginal quality water for irrigating rice and wheat crops. Land Degrad Dev 23:1–9. doi: 10.1002/ldr.1033 Google Scholar
  33. Gharaibeh MA, Eltaif NI, Albalasmeh AA (2011) Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. Int J Phytorem 13:873–883Google Scholar
  34. Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R et al (2013) Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environ Exp Bot 92:110–121. doi: 10.1016/j.envexpbot.2012.05.002 Google Scholar
  35. Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. doi: 10.1016/j.micres.2013.07.004 Google Scholar
  36. Goulet RR, Lalonde JD, Munger C, Dupuis S, Dumont-Frenette G, Prémont S, Campbell PGC (2005) Phytoremediation of effluents from aluminum smelters: a study of Al retention in mesocosms containing aquatic plants. Water Res 39:2291–2300. doi: 10.1016/j.watres.2005.04.029 Google Scholar
  37. Greenberg B, Huang X, Gerhardt K, Glick BR (2007) Field and laboratory tests of a multi-process phytoremediation system for decontamination of petroleum and salt impacted soils. In: Proceedings of the Ninth International In Situ and On-Site Remediation Symposium. Batelle PressGoogle Scholar
  38. Guittonny-Philippe A, Masotti V, Höhener P, Boudenne J-L, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16. doi: 10.1016/j.envint.2013.11.016 Google Scholar
  39. Hamzenejad Taghlidabad R, Khodaverdiloo H, Wenzel WW, Rezapour S (2014) Growth and Cd accumulation of two halophytes and a non-halophyte grown in a non-saline and a saline soil with different Cd levels. Chem Ecol 30:743–754. doi: 10.1080/02757540.2014.894988 Google Scholar
  40. Hansi M, Weidenhamer JD, Sinkkonen A (2014) Plant growth responses to inorganic environmental contaminants are density-dependent: experiments with copper sulfate, barley and lettuce. Environ Pollut 184:443–448. doi: 10.1016/j.envpol.2013.09.027 Google Scholar
  41. Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14:170–176. doi: 10.1111/j.1526-100X.2006.00136.x Google Scholar
  42. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31. doi: 10.1016/j.envexpbot.2013.03.001 Google Scholar
  43. Herouvim E, Akratos CS, Tekerlekopoulou A, Vayenas DV (2011) Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands. Ecol Eng 37:931–939. doi: 10.1016/j.ecoleng.2011.01.018 Google Scholar
  44. Horneck D, Ellsworth J, Hopkins B, Sullivan D, Stevens R (2007) Managing salt-affected soils for crop production. Pac Northwest Ext:21Google Scholar
  45. Hou D, Al-Tabbaa A (2014) Sustainability: a new imperative in contaminated land remediation. Environ Sci Pol 39:25–34. doi: 10.1016/j.envsci.2014.02.003 Google Scholar
  46. Hou D, Al-Tabbaa A, Chen H, Mamic I (2014) Factor analysis and structural equation modelling of sustainable behaviour in contaminated land remediation. J Clean Prod. doi: 10.1016/j.jclepro.2014.01.054 Google Scholar
  47. Hue NV, Campbell S, Li QX, Lee CR, Fong J (2002) Reducing salinity and organic contaminants in the Pearl Harbor dredged material using soil amendments and plants. Remediat J 12:45–63. doi: 10.1002/rem.10045 Google Scholar
  48. Inal A, Gunes A (2008) Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline–sodic–boron toxic soil. J Plant Physiol 165:490–503. doi: 10.1016/j.jplph.2007.01.016 Google Scholar
  49. IPCC (1996) Land Degradation and Desertification. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate Change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 171–190Google Scholar
  50. Jardine A, Speldewinde P, Carver S, Weinstein P (2007) Dryland salinity and ecosystem distress syndrome: human health implications. EcoHealth 4:10–17. doi: 10.1007/s10393-006-0078-9 Google Scholar
  51. Jesus JM, Calheiros CSC, Castro PML, Borges MT (2014) Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Int J Phytorem 16:334–346. doi: 10.1080/15226514.2013.773284 Google Scholar
  52. Jha A, Joshi M, Yadav N, Agarwal P, Jha B (2011) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38:1965–1973. doi: 10.1007/s11033-010-0318-5 Google Scholar
  53. Jordahl JL, Madison MF, Smesrud JK, Emond HM, Motte MQ (2004) Waste management using trees: wastewater, leachate, and groundwater irrigation. In: Phytoremediation. John Wiley & Sons, Inc., pp 717-751. doi: 10.1002/047127304X.ch23
  54. Kan E, Lamers JPA, Eshchanov R, Khamzina A (2008) Small-scale farmers’ perceptions and knowledge of tree intercropping systems in the khorezm region of Uzbekistan. For Trees Livelihoods 18:355–372. doi: 10.1080/14728028.2008.9752643 Google Scholar
  55. Kaur R, Malik R, Paul M (2007) Long-term effects of various crop rotations for managing salt-affected soils through a field scale decision support system—a case study. Soil Use Manag 23:52–62. doi: 10.1111/j.1475-2743.2006.00055.x Google Scholar
  56. Kiliç CC, Kukul YS, Anaç D (2008) Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agric Water Manag 95:854–858. doi: 10.1016/j.agwat.2008.01.019 Google Scholar
  57. Krishnamoorthy R, Kim K, Kim C, Sa T (2014) Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol Biochem 72:1–10. doi: 10.1016/j.soilbio.2014.01.017 Google Scholar
  58. Kurdali F, Janat M, Khalifa K (2003) Growth and nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non‐saline conditions. Commun Soil Sci Plant Anal 34:2471–2494. doi: 10.1081/CSS-120024780 Google Scholar
  59. Laudicina V, Hurtado M, Badalucco L, Delgado A, Palazzolo E, Panno M (2009) Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biol Fertil Soils 45:691–700. doi: 10.1007/s00374-009-0380-0 Google Scholar
  60. Liang H-M, Lin T-H, Chiou J-M, Yeh K-C (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157:1945–1952. doi: 10.1016/j.envpol.2008.11.052 Google Scholar
  61. Lymbery AJ, Doupé RG, Bennett T, Starcevich MR (2006) Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac Eng 34:1–7Google Scholar
  62. Mandare AB, Ambast SK, Tyagi NK, Singh J (2008) On-farm water management in saline groundwater area under scarce canal water supply condition in the Northwest India. Agric Water Manag 95:516–526. doi: 10.1016/j.agwat.2007.12.010 Google Scholar
  63. Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854. doi: 10.1007/s11356-009-0224-3 Google Scholar
  64. Manousaki E, Kalogerakis N (2011a) Halophytes—an emerging trend in phytoremediation. Int J Phytorem 13:959–969. doi: 10.1080/15226514.2010.532241 Google Scholar
  65. Manousaki E, Kalogerakis N (2011b) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Int Eng Chem Res 50:656–660. doi: 10.1021/ie100270x Google Scholar
  66. Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332. doi: 10.1016/j.envres.2007.04.004 Google Scholar
  67. Minhas PS, Dubey SK, Sharma DR (2007) Effects on soil and paddy–wheat crops irrigated with waters containing residual alkalinity. Soil Use Manag 23:254–261. doi: 10.1111/j.1475-2743.2007.00090.x Google Scholar
  68. Neves MA, Miguel MG, Marques C, Panagopoulos T, Beltrão JC (2007) Tetragonia tetragonioides—a potential salt removing species. Response to the combined effects of salts and calcium. Proc of the 3rd IASME/WSEAS Int Conf on Energy, Environment, Ecosystems and Sustainable Development:60–64Google Scholar
  69. Patra DD, Prasad A, Anwar M, Singh D et al (2002) Performance of lemongrass cultivars intercropped with chamomile under sodic soils with different levels of gypsum application. Commun Soil Sci Plant Anal 33:1707–1721. doi: 10.1081/CSS-120004817 Google Scholar
  70. Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Springer, Netherlands, pp 3–20. doi: 10.1007/0-306-48155-3_1 Google Scholar
  71. Porcel R, Aroca R, Ruiz-Lozano J (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200. doi: 10.1007/s13593-011-0029-x Google Scholar
  72. Qadir M, Oster J (2002) Vegetative bioremediation of calcareous sodic soils: history, mechanisms, and evaluation. Irrig Sci 21:91–101. doi: 10.1007/s00271-001-0055-6 Google Scholar
  73. Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294. doi: 10.1002/ldr.504 Google Scholar
  74. Qadir M, Qureshi RH, Ahmad N (1997) Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Res Rehabil 11:343–352Google Scholar
  75. Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521. doi: 10.1002/1099-145x(200011/12)11:6<501::aid-ldr405>3.0.co;2-s Google Scholar
  76. Qadir M, Schubert S, Ghafoor A, Murtaza G (2001) Amelioration strategies for sodic soils: a review. Land Degrad Dev 12:357–386. doi: 10.1002/ldr.458 Google Scholar
  77. Qadir M, Qureshi RH, Ahmad N (2002) Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use Manag 18:381–385. doi: 10.1111/j.1475-2743.2002.tb00256.x Google Scholar
  78. Qadir M, Boers TM, Schubert S, Ghafoor A, Murtaza G (2003) Agricultural water management in water-starved countries: challenges and opportunities. Agric Water Manag 62:165–185. doi: 10.1016/s0378-3774(03)00146-x Google Scholar
  79. Qadir M, Noble AD, Oster JD, Schubert S, Ghafoor A (2005) Driving forces for sodium removal during phytoremediation of calcareous sodic and saline–sodic soils: a review. Soil Use Manag 21:173–180. doi: 10.1111/j.1475-2743.2005.tb00122.x Google Scholar
  80. Qadir M, Oster JD, Schubert S, Murtaza G (2006) Vegetative bioremediation of sodic and saline-sodic soils for productivity enhancement and environment conservation. In: Ozturk M, Waisel Y, Khan MA, Gork G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag Ag, Basel, pp 137–146. doi: 10.1007/3-7643-7610-4_15 Google Scholar
  81. Qadir M, Qureshi AS, Cheraghi SAM (2008) Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19:214–227. doi: 10.1002/ldr.818 Google Scholar
  82. Qin P, R-m H, M-x Z, H-s Z, L-s F, Seliskar DM, Gallagher JL (2015) Ecological engineering through the biosecure introduction of Kosteletzkya virginica (seashore mallow) to saline lands in China: A review of 20 years of activity. Ecol Eng 74:174–186. doi: 10.1016/j.ecoleng.2014.10.021 Google Scholar
  83. Qureshi RH, Aslam M, Akhtar J (2003) Productivity enhancement in the salt-affected lands of joint Satiana pilot project area of Pakistan. J Crop Prod 7:277–297. doi: 10.1300/J144v07n01_10 Google Scholar
  84. Rabhi M, Hafsi C, Lakhdar A, Haji S et al (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol 47:463–468. doi: 10.1111/j.1365-2028.2008.00989.x Google Scholar
  85. Rabhi M, Ferchichi S, Jouini J, Hamrouni M et al (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828. doi: 10.1016/j.biortech.2010.03.097 Google Scholar
  86. Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek S, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breeding 19:137–151. doi: 10.1007/s11032-006-9052-z Google Scholar
  87. Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86. doi: 10.1016/j.envint.2012.12.009 Google Scholar
  88. Rasouli F, Kiani Pouya A, Karimian N (2013) Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma 193–194:246–255. doi: 10.1016/j.geoderma.2012.10.001 Google Scholar
  89. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664. doi: 10.1016/j.soilbio.2007.02.005 Google Scholar
  90. Ritzema HP, Satyanarayana TV, Raman S, Boonstra J (2008) Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: lessons learned in farmers’ fields. Agric Water Manag 95:179–189. doi: 10.1016/j.agwat.2007.09.012 Google Scholar
  91. Rodríguez-Suárez JA, Soto B, Perez R, Diaz-Fierros F (2011) Influence of Eucalyptus globulus plantation growth on water table levels and low flows in a small catchment. J Hydrol 396:321–326. doi: 10.1016/j.jhydrol.2010.11.027 Google Scholar
  92. Rohr JR, Johnson P, Hickey CW, Helm RC, Fritz A, Brasfield S (2013) Implications of global climate change for natural resource damage assessment, restoration, and rehabilitation. Environ Toxicol Chem 32:93–101. doi: 10.1002/etc.2036 Google Scholar
  93. Ruan C-J, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crir Rev Plant Sci 29:329–359. doi: 10.1080/07352689.2010.524517 Google Scholar
  94. Rueda-Puente E, García-Hernández J, Preciado-Rangel P et al (2007) Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth-promoting bacteria. J Agron Crop Sci 193:167–176. doi: 10.1111/j.1439-037X.2007.00254.x Google Scholar
  95. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044. doi: 10.1093/jxb/ers126 Google Scholar
  96. Sahin U, Eroğlu S, Sahin F (2011) Microbial application with gypsum increases the saturated hydraulic conductivity of saline–sodic soils. Appl Soil Ecol 48:247–250. doi: 10.1016/j.apsoil.2011.04.001 Google Scholar
  97. Saqib M, Zörb C, Rengel Z, Schubert S (2005) The expression of the endogenous vacuolar Na+/H+ antiporters in roots and shoots correlates positively with the salt resistance of wheat (Triticum aestivum L.). Plant Sci 169:959–965. doi: 10.1016/j.plantsci.2005.07.001 Google Scholar
  98. Satpathy D, Reddy MV (2013) Phytoextraction of Cd, Pb, Zn, Cu and mn by Indian mustard (Brassica juncea L.) grown on loamy soil amended with heavy metal contaminated municipal solid waste compost. Appl Ecol Environ Res 11:661–679Google Scholar
  99. Schofield RV, Kirkby MJ (2003) Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Glob Biogeochem Cycles 17:1078. doi: 10.1029/2002GB001935 Google Scholar
  100. Setia R, Gottschalk P, Smith P, Marschner P, Baldock J, Setia D, Smith J (2013) Soil salinity decreases global soil organic carbon stocks. Sci Total Environ 465:267–272. doi: 10.1016/j.scitotenv.2012.08.028 Google Scholar
  101. Shekhawat VPS, Kumar A, Neumann K-H (2006) Bio-reclamation of secondary salinized soils using halophytes. Biosaline agriculture and salinity tolerance in plants. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Birkhäuser Basel, pp 147–154. doi: 10.1007/3-7643-7610-4_16
  102. Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976. doi: 10.1016/j.watres.2012.05.020 Google Scholar
  103. Siddikee MA, Glick BR, Chauhan PS, Wj Y, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434. doi: 10.1016/j.plaphy.2011.01.015 Google Scholar
  104. Smesrud JK, Duvendack GD, Obereiner JM, Jordahl JL, Madison MF (2011) Practical salinity management for leachate irrigation to poplar trees. Int J Phytorem 14:26–46. doi: 10.1080/15226514.2011.607868 Google Scholar
  105. Stirzaker RJ, Cook FJ, Knight JH (1999) Where to plant trees on cropping land for control of dryland salinity: some approximate solutions. Agric Water Manag 39:115–133. doi: 10.1016/S0378-3774(98)00074-2 Google Scholar
  106. Suer P, Andersson-Sköld Y (2011) Biofuel or excavation?—life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35:969–981Google Scholar
  107. Sultana N, Ikeda T, Kashem MA (2001) Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environ Exp Bot 46:129–140. doi: 10.1016/S0098-8472(01)00090-9 Google Scholar
  108. Szabolcs I (1974) Salt affected soils in Europe. Martinus Nijhoff, Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of SciencesGoogle Scholar
  109. Szabolcs I (1990) Chapter 6 Impact of Climatic Change on Soil Attributes: Influence on salinization and alkalinization. In: H.W. Scharpenseel MS, Ayoub A (eds) Developments in soil science, vol 20. Elsevier, pp 61–69. doi: 10.1016/S0166-2481(08)70482-3
  110. Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153. doi: 10.1016/j.envexpbot.2005.05.007 Google Scholar
  111. Tóth G, Luca M, Ezio R (2008) Threats to soil quality in Europe EUR 23438—Scientific and Technical Research series Luxembourg: Office for Official Publications of the European Communities:61–74Google Scholar
  112. Van den Berge J, Naudts K, Janssens IA, Ceulemans R, Nijs I (2011) Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution). Environ Pollut 159:3294–3301. doi: 10.1016/j.envpol.2011.08.050 Google Scholar
  113. Van-Camp L, Bujarrabal B, Gentile A-R, Jones RJA, Montanarella L, Olazabal C, Selvaradjou S-K (2004) Reports of the Technical Working Groups established under the thematic strategy for soil protection EUR 21319 EN/2, 872 pp Office for Official Publications of the European Communities, Luxembourg:192Google Scholar
  114. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi: 10.1016/j.envexpbot.2007.05.011 Google Scholar
  115. Walker DJ, Lutts S, Sánchez-García M, Correal E (2013) Atriplex halimus L.: its biology and uses. J Arid Environ. doi: 10.1016/j.jaridenv.2013.09.004 Google Scholar
  116. Wang Y-C, Ko C-H, Chang F-C, Chen P-Y et al (2011) Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass Bioenergy 35:50–58Google Scholar
  117. Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4:2669–2681. doi: 10.1039/c1ee01029h Google Scholar
  118. Wong VNL, Dalal RC, Greene RSB (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41:29–40. doi: 10.1016/j.apsoil.2008.08.006 Google Scholar
  119. Yensen NP, Biel KY (2006) Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection ecophysiology of high salinity tolerant plants. In: Khan MA, Weber DJ (eds), vol 40. Tasks for vegetation science 34. Springer Netherlands, pp 313–344. doi: 10.1007/1-4020-4018-0_21
  120. Zalesny RS, Bauer EO (2007) Evaluation of Populus and Salix continuously irrigated with landfill leachate II. Soils and early tree development. Int J Phytorem 9:307–323. doi: 10.1080/15226510701476594 Google Scholar
  121. Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778. doi: 10.1016/j.jaridenv.2011.04.008 Google Scholar
  122. Zhang H-S, Zai X-M, Wu X-H, Qin P, Zhang W-M (2014) An ecological technology of coastal saline soil amelioration. Ecol Eng 67:80–88. doi: 10.1016/j.ecoleng.2014.03.022 Google Scholar
  123. Zhao K-F, Fan H, Song J, Sun M-X, Wang B-Z, Zhang S-Q, Ungar IA (2005) Two Na+ and Cl hyperaccumulators of the Chenopodiaceae. J Integr Plant Biol 47:311–318. doi: 10.1111/j.1744-7909.2005.00057.x Google Scholar
  124. Zia MH, Sabir M, Ghafoor A, Murtaza G (2007) Effectiveness of sulphuric acid and gypsum for the reclamation of a calcareous saline-sodic soil under four crop rotations. J Agron Crop Sci 193:262–269. doi: 10.1111/j.1439-037X.2007.00262.x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • João M. Jesus
    • 1
    • 2
  • Anthony S. Danko
    • 5
    Email author
  • António Fiúza
    • 1
    • 2
  • Maria-Teresa Borges
    • 3
    • 4
  1. 1.Department of Mining Engineering, Geo-Environment and Resources Research Centre (CIGAR)University of Porto-Faculty of Engineering (FEUP)PortoPortugal
  2. 2.Centre for Natural Resources and the Environment (CERENA), Instituto Superior TécnicoULLisboaPortugal
  3. 3.Biology Department, Science FacultyPorto University (FCUP)PortoPortugal
  4. 4.CIIMARUniversity of PortoPortoPortugal
  5. 5.CIGAR/CERENA, Department of Mining EngineeringUniversity of Porto-Faculty of Engineering (FEUP)PortoPortugal

Personalised recommendations