Environmental Science and Pollution Research

, Volume 22, Issue 14, pp 10452–10462 | Cite as

Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds

  • Lei Xiang
  • Hai-Ming Zhao
  • Yan-Wen Li
  • Xian-Pei Huang
  • Xiao-Lian Wu
  • Teng Zhai
  • Yue Yuan
  • Quan-Ying Cai
  • Ce-Hui Mo
Research Article

Abstract

The toxicity of four zinc oxide nanoparticles (i.e., spheric ZnO-30, spheric ZnO-50, columnar ZnO-90, and hexagon rod-like ZnO-150) to the seed germination of Chinese cabbage (Brassica pekinensis L.) was investigated in this study. The results showed that zinc oxide nanoparticles (nano-ZnOs) did not affect germination rates at concentrations of 1–80 mg/L but significantly inhibited the root and shoot elongation of Chinese cabbage seedlings, with the roots being more sensitive. The inhibition was evident mainly during seed incubation rather than the seed soaking process. Both the production of free hydroxyl groups (·OH) and the Zn bioaccumulation in roots or shoots resulted in toxicity of nano-ZnOs to Chinese cabbage seedlings. The toxicity of nano-ZnOs was affected significantly by their primary particle sizes in the minimum dimensionality, but large columnar ZnO-90 and small spherical ZnO-50 had comparable toxicities. Therefore, both the particle size and morphology affected the toxicity of nano-ZnOs.

Keywords

Zinc oxide Nanoparticles Size Morphology Seed germination Toxicity 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41071211, 41173101, and 41301337).

Supplementary material

11356_2015_4172_MOESM1_ESM.pdf (658 kb)
ESM 1 (PDF 657 kb)

References

  1. Bai W, Zhang ZY, Tian WJ, He X, Ma YH, Zhao YL, Chai ZF (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654. doi: 10.1007/s11051-009-9740-9 CrossRefGoogle Scholar
  2. Chang X, Zu Y, Zhao Y (2011) Size and structure effects in the nanotoxic response of nanomaterials. Chin Sci Bull 56:108–118. doi: 10.1360/972010-1640 CrossRefGoogle Scholar
  3. Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - Effects of size and crystalline structure. Chemosphere 90:1083–1090. doi: 10.1016/j.chemosphere.2012.09.013 CrossRefGoogle Scholar
  4. Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589. doi: 10.1016/j.tplants.2011.08.003 CrossRefGoogle Scholar
  5. Dimitrios S, Saion KS, Jason CW (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi: 10.1007/s11051-013-1829-5 CrossRefGoogle Scholar
  6. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi: 10.1021/es071445r CrossRefGoogle Scholar
  7. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955. doi: 10.1016/j.jhazmat.2010.11.018 CrossRefGoogle Scholar
  8. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi: 10.1021/es9015553 CrossRefGoogle Scholar
  9. Hao LH, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotox Environ Safe 80:103–110. doi: 10.1016/j.ecoenv.2012.02.017 CrossRefGoogle Scholar
  10. Hao LH, Wang ZY, Xing BS (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). J Environ Sci-China 21:1459–1466. doi: 10.1016/s1001-0742(08)62440-7 CrossRefGoogle Scholar
  11. Hu XG, Zhou QX (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782Google Scholar
  12. Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356. doi: 10.1021/es9010543 CrossRefGoogle Scholar
  13. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YJ, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383. doi: 10.1021/es048729l CrossRefGoogle Scholar
  14. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781. doi: 10.1021/es103031a CrossRefGoogle Scholar
  15. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. doi: 10.1021/es1041892 CrossRefGoogle Scholar
  16. Kool PL, Ortiz MD, van Geste CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719. doi: 10.1016/j.envpol.2011.05.021 CrossRefGoogle Scholar
  17. Kordon H (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26:247–251. doi: 10.1080/00219266.1992.9655281 CrossRefGoogle Scholar
  18. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:1–12. doi: 10.1186/1743-8977-6-14 CrossRefGoogle Scholar
  19. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi: 10.1016/j.envpol.2007.01.016 CrossRefGoogle Scholar
  20. Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585. doi: 10.1021/es800422x CrossRefGoogle Scholar
  21. Liu TF, Wang T, Sun C, Wang YM (2009a) Single and joint toxicity of cypermethrin and copper on Chinese cabbage (Pakchoi) seeds. J Hazard Mater 163:344–348. doi: 10.1016/j.jhazmat.2008.06.099 CrossRefGoogle Scholar
  22. Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li YF, Li B, Chai ZF, Wu G, Chen CY (2009b) Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 9:6335–6343. doi: 10.1166/jnn.2009.1320 CrossRefGoogle Scholar
  23. Luna-delRisco M, Orupold K, Dubourguier HC (2011) Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189:603–608. doi: 10.1016/j.jhazmat.2011.02.085 CrossRefGoogle Scholar
  24. Ma YH, Kuang LL, He X, Bai W, Ding YY, Zhang ZY, Zhao YL, Chai ZF (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279. doi: 10.1016/j.chemosphere.2009.10.050 CrossRefGoogle Scholar
  25. Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Canorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480. doi: 10.1016/j.envpol.2011.03.013 CrossRefGoogle Scholar
  26. Mittal A, Sara UVS, Ali A, Aqil M (2008) The effect of penetration enhancers on permeation kinetics of nitrendipine in two different skin models. Biol Pharm Bull 31:1766–1772. doi: 10.1248/bpb.31.1766 CrossRefGoogle Scholar
  27. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi: 10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  28. Peterson CA, Lefcounrt BEM (1990) Development of endodermal casparian bands and xylem in lateral roots of broad bean. Can J Bot 68:2729–2735. doi: 10.1016/j.envpol.2013.11.014 CrossRefGoogle Scholar
  29. Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768. doi: 10.1021/es102501z CrossRefGoogle Scholar
  30. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agr Food Chem 59:3485–3498. doi: 10.1021/jf104517j CrossRefGoogle Scholar
  31. Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7:34197–34197. doi: 10.1371/journal.pone.0034197 CrossRefGoogle Scholar
  32. Wang B, Feng WY, Wang TC, Guang J, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123. doi: 10.1016/j.toxlet.2005.08.007 CrossRefGoogle Scholar
  33. Wang Z, Xiao BD, Song LR, Wu XQ, Zhang JQ, Wang CB (2011) Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology 20:803–814. doi: 10.1016/j.toxlet.2005.08.007 CrossRefGoogle Scholar
  34. Wang ZY, Xie XY, Zhao J, Liu XY, Feng WQ, White JC, Xing BS (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441. doi: 10.1021/es204212z
  35. Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452. doi: 10.1016/j.scitotenv.2011.01.015 CrossRefGoogle Scholar
  36. Xu ZQ, Zhou QX, Liu WT (2009) Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China. J Environ Sci-China 21:1598–1606. doi: 10.1016/s1001-0742(08)62461-4 CrossRefGoogle Scholar
  37. Xu M, Fujita D, Kajiwara S, Minowa T, Li X, Takemura T, Iwai H, Hanagata N (2010) Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials 31:8022–8031. doi: 10.1016/j.biomaterials.2010.06.022 CrossRefGoogle Scholar
  38. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132. doi: 10.1016/j.toxlet.2005.03.003 CrossRefGoogle Scholar
  39. Zhai T, Xie SL, Zhao YF, Sun XF, Lu XH, Yu MH, Xu FM, Tong YX (2012) Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. Crystengcomm 14:1850–1855. doi: 10.1039/c1ce06013a CrossRefGoogle Scholar
  40. Zhang WX, Karn B (2005) Nanoscale environmental science and technology: challenges and opportunities. Environ Sci Technol 39:94A–95A. doi: 10.1021/es053197+ CrossRefGoogle Scholar
  41. Zhang L, Somasundaran P, Mielczarski J, Mielczarski E (2002) Adsorption mechanism of n-dodecyl-β-D-maltoside on alumina. J Colloid Interface Sci 256:16–22. doi: 10.1006/jcis.2001.7858 CrossRefGoogle Scholar
  42. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212. doi: 10.1016/j.watres.2007.11.036 CrossRefGoogle Scholar
  43. Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, Ding YY, Zhao YL, Chai ZF (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841. doi: 10.1021/es2027295 CrossRefGoogle Scholar
  44. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717. doi: 10.1039/b805998e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lei Xiang
    • 1
  • Hai-Ming Zhao
    • 1
  • Yan-Wen Li
    • 1
  • Xian-Pei Huang
    • 1
  • Xiao-Lian Wu
    • 1
  • Teng Zhai
    • 1
    • 2
  • Yue Yuan
    • 1
  • Quan-Ying Cai
    • 1
  • Ce-Hui Mo
    • 1
  1. 1.Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, School of EnvironmentJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations