Environmental Science and Pollution Research

, Volume 23, Issue 14, pp 13591–13597 | Cite as

Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration

  • Knut RydgrenEmail author
  • Inger Auestad
  • Liv Norunn Hamre
  • Dagmar Hagen
  • Line Rosef
  • Gudrun Skjerdal
How can we restore the biodiversity and ecosystem services in mining and industrial sites?


Spoil heaps are the visible footprint of hydropower production, particularly in vulnerable alpine environments. Speeding up vegetation development by seeding commercial grass species has been a common restoration practice for the last 50 years, but we lack information on whether seeded species decline and allow native plant cover to develop. We visually estimated cover of native vascular plants and five seeded grass species (Agrostis capillaris, Festuca ovina, Festuca rubra, Schedonorus pratensis and Phleum pratense) on eight spoil heaps at different elevations (boreal–alpine zone) in western Norway. Spoil heap vegetation was censused twice (9–20 and 24–36 years after spoil heap construction); the undisturbed surrounding vegetation was also censused on the second occasion. Total cover on the spoil heaps showed some increase, but remained far below that in surrounding areas. Cover of seeded grass species in the surroundings was low (but not negligible), indicating suboptimal establishment ability. Seeded species usually covered less than 20 % of the spoil heaps, and only F. rubra, F. ovina and A. capillaris contributed substantially. Proportional cover indicated better initial establishment by seeded species, but their cover decreased between the censuses on all but the highest located spoil heap. The persistence of seeded grass species is problematic, and despite the decrease in proportional cover, they are likely to persist for decades on spoil heaps, posing a risk of invasion of surrounding areas. We therefore recommend replacing the practice of seeding with more appropriate restoration measures.


Management implications Invasion Persistence Restoration Seeding Spoil heaps Succession Vegetation 



We would like to thank Energy Norway, the Norwegian Water Resources and Energy Directorate, Statkraft Energi, E-CO Energi, BKK Produksjon, Sira-Kvina kraftselskap, Østfold Energi and SKS Produksjon and the Research Council of Norway (project no. 208024 ECONADA) for the financial support. We are also grateful to Ulrike Hanssen, André F. Husabø, Bente Karin Husabø and Silje F. Husabø for the assistance with the field work, to Marte S. Lilleng and Jochim P. Töpper for the advice on the statistical methods, and to Alison Coulthard for the language editing.

Supplementary material

11356_2015_4161_MOESM1_ESM.docx (31 kb)
Fig. A1 (DOCX 31 kb)
11356_2015_4161_MOESM2_ESM.docx (194 kb)
Fig. A2 (DOCX 193 kb)
11356_2015_4161_MOESM3_ESM.docx (201 kb)
Fig. A3 (DOCX 201 kb)
11356_2015_4161_MOESM4_ESM.docx (206 kb)
Fig. A4 (DOCX 206 kb)
11356_2015_4161_MOESM5_ESM.docx (15 kb)
Table A1 (DOCX 15 kb)
11356_2015_4161_MOESM6_ESM.docx (15 kb)
Table A2 (DOCX 15 kb)
11356_2015_4161_MOESM7_ESM.docx (15 kb)
Table A3 (DOCX 14 kb)


  1. Anonymous (2009) Lov 2009-06-19 nr 100: Lov om forvaltning av naturens mangfold (naturmangfoldloven). Miljøverndepartementet, OsloGoogle Scholar
  2. Aradóttir ÁL, Petursdottir T, Halldorsson G, Svavarsdottir K, Arnalds O (2013) Drivers of ecological restoration: lessons from a century of restoration in Iceland. Ecol Soc 18 (4) doi: 10.5751/ES-05946-180433
  3. Arnalds O, Aradóttir AL, Thorsteinsson I (1987) The nature and restoration of denuded areas in Iceland. Arct Alp Res 19:518–525. doi: 10.2307/1551419 CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 1.0-6. R Foundation for Statistical Computing,
  5. Bayfield NG (1980) Replacement of vegetation on disturbed ground near ski lifts in the Cairngorm Mountains, Scotland. J Biogeogr 7:249–260. doi: 10.2307/2844631 CrossRefGoogle Scholar
  6. Bayfield NG (1996) Long-term changes in colonization of bulldozed ski pistes at Cairn Gorm, Scotland. J Appl Ecol 33:1359–1365. doi: 10.2307/2404776 CrossRefGoogle Scholar
  7. Beerling DJ (1998) Biological flora of the British Isles: Salix herbacea L. J Ecol 86:872–895. doi: 10.1046/j.1365-2745.1998.8650872.x CrossRefGoogle Scholar
  8. Bell JNB, Tallis JH (1973) Biological flora of the British Isles. Empetrum nigrum L. J Ecol 61:289–305. doi: 10.2307/2258934 CrossRefGoogle Scholar
  9. Boudreau S, Ropars P, Harper KA (2010) Population dynamics of Empetrum hermaphroditum (Ericaceae) on a subarctic sand dune: evidence of rapid colonization through efficient sexual reproduction. Am J Bot 97:770–781. doi: 10.3732/ajb.0900304 CrossRefGoogle Scholar
  10. Byrne M, Stone L, Millar MA (2011) Assessing genetic risk in revegetation. J Appl Ecol 48:1365–1373. doi: 10.1111/j.1365-2664.2011.02045.x CrossRefGoogle Scholar
  11. Callaway RM et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi: 10.1038/nature00812 CrossRefGoogle Scholar
  12. Chambers JC (1995) Relationships between seed fates and seedling establishment in an alpine ecosystem. Ecology 76:2124–2133. doi: 10.2307/1941687 CrossRefGoogle Scholar
  13. Chapin FSI, Chapin MC (1980) Revegetation of an arctic disturbed site by native tundra species. J Appl Ecol 17:449–456. doi: 10.2307/2402339 CrossRefGoogle Scholar
  14. Crawley MJ (2013) The R book, 2nd edn. Wiley, ChichesterGoogle Scholar
  15. Densmore RV (1992) Succession on an Alaskan tundra disturbance with and without assisted revegetation with grass. Arct Alp Res 24:238–243. doi: 10.2307/1551663 CrossRefGoogle Scholar
  16. Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X (2001) Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology 122:563–569. doi: 10.1017/S0031182001007740 CrossRefGoogle Scholar
  17. Eriksson O, Fröborg H (1996) “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can J Bot 74:1369–1374. doi: 10.1139/b96-166 CrossRefGoogle Scholar
  18. Forbes BC, Jefferies RL (1999) Revegetation of disturbed arctic sites: constraints and applications. Biol Conserv 88:15–24. doi: 10.1016/S0006-3207(98)00095-0 CrossRefGoogle Scholar
  19. Gretarsdottir J, Aradottir AL, Vandvik V, Heegaard E, Birks HJB (2004) Long-term effects of reclamation treatments on plant succession in Iceland. Restor Ecol 12:268–278. doi: 10.1016/S0006-3207(98)00095-0 CrossRefGoogle Scholar
  20. Güsewell S, Klötzli F (2012) Local plant species replace initially sown species on roadsides in the Swiss National Park. Econ Mon 4:23–33Google Scholar
  21. Hagen D, Evju M (2013) Using short-term monitoring data to achieve goals in a large-scale restoration. Ecol Soc 18(3):29. doi: 10.5751/es-05769-180329 Google Scholar
  22. Hagen D, Hansen TI, Graae BJ, Rydgren K (2014) To seed or not to seed in alpine restoration: introduced grass species outcompete rather than facilitate native species. Ecol Eng 64:255–261. doi: 10.1016/S0006-3207(98)00095-0 CrossRefGoogle Scholar
  23. Hedberg D, Kullander K, Frank H (2010) The world needs a new energy paradigm. Ambio 39:1–10. doi: 10.1007/s13280-010-0057-9 CrossRefGoogle Scholar
  24. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155. doi: 10.1016/S0169-5347(03)00002-8 CrossRefGoogle Scholar
  25. Jorgenson MT, Joyce MR (1994) Six strategies for rehabilitating land disturbed by oil development in arctic Alaska. Arctic 47:374–390CrossRefGoogle Scholar
  26. Jorgenson JC, ver Hoef JM, Jorgenson MT (2010) Long-term recovery patterns of arctic tundra after winter seismic exploration. Ecol Appl 20:205–221. doi: 10.1890/08-1856.1 CrossRefGoogle Scholar
  27. Kidd JG, Streever B, Jorgenson MT (2006) Site characteristics and plant community development following partial gravel removal in an arctic oilfield. Arct Antarct Alp Res 38:384–393. doi: 10.1657/1523-0430(2006)38[384:scapcd];2 CrossRefGoogle Scholar
  28. Krautzer B, Wittmann H (2006) Restoration of alpine ecosystems. In: van Andel J, Aronsen J (eds) Restoration ecology: the new frontier. Blackwell, Oxford, pp 208–220Google Scholar
  29. Lid J, Lid DT (2005) Norsk flora. 7 utgåve ved R. Elven Det Norske Samlaget, Oslo, NorwayGoogle Scholar
  30. McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111. doi: 10.1111/j.1472-4642.2010.00713.x CrossRefGoogle Scholar
  31. Moen A (1999) National atlas of Norway: vegetation. Norwegian Mapping Authority, HønefossGoogle Scholar
  32. Økland RH (1990) Vegetation ecology: theory, methods and applications with reference to Fennoscandia Sommerfeltia supplement 1:1-233Google Scholar
  33. Østhagen H, Eie JA (2010) Fra grønne flater til økologisk restaurering: fortid, nåtid og framtid Norsk Inst Naturforsk Temahefte 42:16-19Google Scholar
  34. Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202. doi: 10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2 CrossRefGoogle Scholar
  35. Pauchard A et al (2009) Ain't no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi: 10.1890/080072 CrossRefGoogle Scholar
  36. Rausch J, Kershaw GP (2007) Short-term revegetation performance on gravel-dominated, human-induced disturbances, Churchill, Manitoba, Canada. Arct Antarct Alp Res 39:16–24. doi: 10.1657/1523-0430(2007)39[16:SRPOGH]2.0.CO;2 CrossRefGoogle Scholar
  37. R Development Core Team (2013) R: A language for statistical computing. R Foundation for Statistical Computing, Available from
  38. Reisch C, Schurm S, Poschlod P (2007) Spatial genetic structure and clonal diversity in an alpine population of Salix herbacea (Salicaceae). Ann Bot 99:647–651. doi: 10.1093/aob/mcl290 CrossRefGoogle Scholar
  39. Rydgren K, Halvorsen R, Odland A, Skjerdal G (2011) Restoration of alpine spoil heaps: successional rates predict vegetation recovery in 50 years. Ecol Eng 37:294–301. doi: 10.1016/j.ecoleng.2010.11.022 CrossRefGoogle Scholar
  40. Rydgren K, Halvorsen R, Auestad I, Hamre LN (2013) Ecological design is more important than compensatory mitigation for successful restoration of alpine spoil heaps. Restor Ecol 21:17–25. doi: 10.1111/j.1526-100X.2012.00865.x CrossRefGoogle Scholar
  41. Schröder R, Prasse R (2013) Do cultivated varieties of native plants have the ability to outperform their wild relatives? PLoS ONE 8:e71066. doi: 10.1371/journal.pone.0071066 CrossRefGoogle Scholar
  42. Skjerdal G (1993) Kvantitative undersøkjingar av vegetasjonen på steintippar i Aurland, Vest-Noreg. Cand scient. Thesis, Univ. Bergen, Unpubl., BergenGoogle Scholar
  43. Skjerdal G, Odland A (1995) Vegetasjonsutvikling på 15 steintippar i Sør-Noreg: ei botanisk-økologisk vurdering etter opp til 40 år med suksesjon. Høgskulen i Telemark, BøGoogle Scholar
  44. Szmidt AE, Nilsson M-C, Briceño E, Zackrisson O, Wang X-R (2002) Establishment and genetic structure of Empetrum hermaphroditum populations in northern Sweden. J Veg Sci 13:627–634. doi: 10.1111/j.1654-1103.2002.tb02090.x Google Scholar
  45. Younkin WE, Martens HE (1987) Long term success of seeded species and their influence on native species invasions at abandoned rig site A-01, Caribou Hills, N.W.T., Canada. Arct Alp Res 19:566–571. doi: 10.1111/j.1654-1103.2002.tb02090.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Knut Rydgren
    • 1
    Email author
  • Inger Auestad
    • 1
  • Liv Norunn Hamre
    • 1
  • Dagmar Hagen
    • 2
  • Line Rosef
    • 3
  • Gudrun Skjerdal
    • 1
  1. 1.Faculty of Engineering and ScienceSogn og Fjordane University CollegeSogndalNorway
  2. 2.Norwegian Institute for Nature ResearchTrondheimNorway
  3. 3.Department of Plant ScienceNorwegian University of Life SciencesÅsNorway

Personalised recommendations