Environmental Science and Pollution Research

, Volume 22, Issue 13, pp 9704–9716 | Cite as

Evolution of the MIDTAL microarray: the adaption and testing of oligonucleotide 18S and 28S rDNA probes and evaluation of subsequent microarray generations with Prymnesium spp. cultures and field samples

  • Gary R. McCoy
  • Nicolas Touzet
  • Gerard T. A. Fleming
  • Robin Raine
Research Article


The toxic microalgal species Prymnesium parvum and Prymnesium polylepis are responsible for numerous fish kills causing economic stress on the aquaculture industry and, through the consumption of contaminated shellfish, can potentially impact on human health. Monitoring of toxic phytoplankton is traditionally carried out by light microscopy. However, molecular methods of identification and quantification are becoming more common place. This study documents the optimisation of the novel Microarrays for the Detection of Toxic Algae (MIDTAL) microarray from its initial stages to the final commercial version now available from Microbia Environnement (France). Existing oligonucleotide probes used in whole-cell fluorescent in situ hybridisation (FISH) for Prymnesium species from higher group probes to species-level probes were adapted and tested on the first-generation microarray. The combination and interaction of numerous other probes specific for a whole range of phytoplankton taxa also spotted on the chip surface caused high cross reactivity, resulting in false-positive results on the microarray. The probe sequences were extended for the subsequent second-generation microarray, and further adaptations of the hybridisation protocol and incubation temperatures significantly reduced false-positive readings from the first to the second-generation chip, thereby increasing the specificity of the MIDTAL microarray. Additional refinement of the subsequent third-generation microarray protocols with the addition of a poly-T amino linker to the 5′ end of each probe further enhanced the microarray performance but also highlighted the importance of optimising RNA labelling efficiency when testing with natural seawater samples from Killary Harbour, Ireland.


HABs Molecular probes MIDTAL Microarray RNA Prymnesium 



The authors would like to acknowledge the assistance of Simon Kennedy (Killary Fjord Shellfish), Sarah Cosgrove and Annette Wilson during the sampling survey period. We would also like to acknowledge the continuous guiding support from all the MIDTAL project partners. This work was funded through the EU 7th Framework Programme (FP7-ENV-2007-1-MIDTAL-201724).


  1. Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35CrossRefGoogle Scholar
  2. Chou CC, Chen CH, Lee TT, Peck K (2004) Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res 32:e99–e99CrossRefGoogle Scholar
  3. Diercks S, Metfies K, Medlin LK (2008a) Development and adaptation of a multiprobe biosensor for the use in a semi-automated device for the detection of toxic algae. Biosens Bioelectron 23:1527–1533CrossRefGoogle Scholar
  4. Diercks S, Metfies K, Medlin LK (2008b) Molecular probe sets for the detection of toxic algae for use in sandwich hybridization formats. J Plankton Res 30:439–448CrossRefGoogle Scholar
  5. Dittami SM, Edvardsen B (2013) GPR-Analyzer: a simple tool for quantitative analysis of hierarchical multispecies microarrays. Environ Sci Pollut Res 20:6808–6815CrossRefGoogle Scholar
  6. Edvardsen B, Paasche E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer-Verlag, Berlin, Heidelberg, Germany, pp 198–208Google Scholar
  7. Edvardsen B, Eikrem W, Throndsen J, Saez AG, Probert I, Medlin LK (2011) Ribosomal DNA phylogenies and a morphological revision set the basis for a revised taxonomy of Prymnesiales (Haptophyta). Eur J Phycol 46:202–228CrossRefGoogle Scholar
  8. Eller G, Töbe K, Medlin LK (2007) A set of hierarchical FISH probes for the Haptophyta and a division level probe for the Heterokonta. J Plank Res 29:629–664CrossRefGoogle Scholar
  9. Galluzzi L, Bertozzini E, Penna A, Perini F, Pigalarga A, Graneli E, Magnani M (2008) Detection and quantification of Prymnesium parvum (Haptophyceae) by real-time PCR. Appl Microbiol 46:261–266CrossRefGoogle Scholar
  10. Galluzzi L, Cegna A, Casabianca S, Penna A, Saunders N, Magnani M (2011) Development of an oligonucleotide microarray for the detection and monitoring of marine dinoflagellates. J Microbiol Methods 84:234–242CrossRefGoogle Scholar
  11. Gescher C, Metfies K, Medlin LK (2008) The ALEX CHIP—development of a DNA chip for identification and monitoring of Alexandrium. Harmful Algae 7:485–494CrossRefGoogle Scholar
  12. Groben R, John U, Eller G, Lange M, Medlin LK (2004) Using fluorescently-labelled rRNA probes for hierarchical estimation of phytoplankton diversity—a mini-review. Nova Hedwig 79:313–320CrossRefGoogle Scholar
  13. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. cyclotella nana hustedt, and detonula confervacea (cleve) gran. Can J Microbiol 8:229–239Google Scholar
  14. Hajdu S, Larsson U, Moestrup Ø (1996) Seasonal dynamics of Chrysochromulina species (Prymnesiophyceae) in coastal area and nutrient-enriched inlet of the northern Baltic proper. Bot Mar 39:281–295CrossRefGoogle Scholar
  15. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99CrossRefGoogle Scholar
  16. Kegel JU, Del Amo Y, Medlin LK (2013a) Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France. Environ Sci Pollut Res 20:6690–6704CrossRefGoogle Scholar
  17. Kegel JU, Del Amo Y, Costes L, Medlin LK (2013b) Testing a microarray to detect and monitor toxic microalgae in Arcachon Bay in France. Microarrays 2:1–23. doi: 10.3390/microarrays2010001 CrossRefGoogle Scholar
  18. Lange M, Simon N, Guillou L, Vaulot D, Amann R, Ludwig W, Medlin LK (1996) Identification of the class Prymnesiophyceae and the genus Phaeocystis with rRNA-targeted nucleic acid probes detected by flow cytometry. J Phycol 32:858–868CrossRefGoogle Scholar
  19. Larsen A, Eikrem W, Paasche E (1993) Growth and toxicity in Prymnesium patelliferum (Prymnesiophyceae) isolated from Norwegian waters. Can J Bot 71:1357–1362CrossRefGoogle Scholar
  20. Lewis J, Medlin LK, Raine R (2012) MIDTAL (Microarrays for the Detection of Toxic Algae): a protocol for a successful microarray hybridisation and analysis. Koeltz, GermanyGoogle Scholar
  21. Lim EL, Amaral LA, Caron DA, Delong EF (1993) Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl Environ Microbiol 59:1647–1655Google Scholar
  22. McCoy GR, Raine R, Medlin LK, et al. (2012) Field testing for toxic algae with a microarray: initial results from the MIDTAL project. ICHA14 Conference Proceedings Crete 2010Google Scholar
  23. McCoy GR, Touzet N, Fleming GTA, Raine R (2013) An evaluation of the applicability of microarrays for monitoring toxic algae in Irish coastal waters. Environ Sci Pollut Res 20:6751–6764CrossRefGoogle Scholar
  24. McCoy GR, Kegel JU, Touzet N, Fleming GTA, Medlin LK, Raine R (2014a) An assessment of RNA content in Prymnesium parvum, Prymnesium polylepis, cf. Chattonella sp. and Karlodinium veneficum under varying environmental conditions for calibrating an RNA microarray for species detection. FEMS Microbiol Ecol. doi: 10.1111/1574-6941.12277 Google Scholar
  25. McCoy GR, McNamee S, Campbell K, Elliott CT, Fleming GTA, Raine R (2014b) Monitoring a toxic bloom of Alexandrium minutum using novel microarray and multiplex surface plasmon resonance biosensor technology. Harmful Algae 32:40–48CrossRefGoogle Scholar
  26. McDermott G, Raine R (2010) Settlement bottle method for quantitative phytoplankton analysis. In: Karlson B, Cusack C, Bresnan E (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. IOC of UNESCO, Paris, pp 21–24Google Scholar
  27. Medlin LK (2013) Note: steps taken to optimise probe specificity and signal intensity prior to field validation of the MIDTAL (Microarray for the Detection of Toxic Algae). Environ Sci Pollut Res 20:6686–6689CrossRefGoogle Scholar
  28. Metfies K, Medlin LK (2005) Ribosomal RNA probes and microarrays: their potential use in assessing microbial biodiversity. Meth Enzymol 395:258–278CrossRefGoogle Scholar
  29. Metfies K, Medlin LK (2008) Feasibility of transferring FISH-probes to an 18S rRNA gene phylochip and a mapping of signal intensity. Appl Environ Microbiol 74:2814–2821CrossRefGoogle Scholar
  30. Metfies K, Borsutzki P, Gesher C, Medlin LK, Frickenhaus S (2008) PHYLOCHIPANALYSER—a program for analysing hierarchical probe sets. Mol Ecol Res 8:99–102CrossRefGoogle Scholar
  31. Moestrup Ø (1994) Economic aspects: ‘blooms’, nuisance species, and toxins. In: Green JC and Leadbeater BSC (ed) The haptophyte algae, Systematics Association Special Volume No. 51, Clarendon Press, Oxford, pp 265-285Google Scholar
  32. Moon-Van Der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610CrossRefGoogle Scholar
  33. Penna A, Galluzzi L (2013) The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. Environ Sci Pollut Res 20:6851–6862CrossRefGoogle Scholar
  34. Scholin CA and Anderson DM (1998) Detection and quantification of HAB species using antibody and DNA probes: progress to date and future research objectives. In: Regura B, Blanko J, Fernandez ML and Wyatt T (eds). Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO. pp. 253–257Google Scholar
  35. Simon N, Brenner J, Edvardsen B, Medlin LK (1997) The identification of Chrysochromulina and Prymnesium species (Haptophyta, Prymnesiophyceae) using fluorescent or chemiluminescent oligonucleotide probes: a means for improving studies on toxic algae. Eur J Phycol 32:393–401CrossRefGoogle Scholar
  36. Simon N, Campbell L, Ornolfsdottir E, Groben RL, Guillou L, Lange M, Medlin LK (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J Euk Micro 47:76–84CrossRefGoogle Scholar
  37. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Evidence for a global epidemic, In Toxic marine phytoplankton. Elsevier, New York, pp 29–40Google Scholar
  38. Thondsen J (1978) Preservation and storage. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, p 69–74Google Scholar
  39. Töbe K, Eller G, Medlin LK (2006) Automated detection and enumeration for toxic algae by solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta: Prymnesiophyceae). J Plank Res 28:643–657CrossRefGoogle Scholar
  40. Touzet N, Raine R (2007) Discrimination of Alexandrium andersoni and A. minutum (Dinophyceae) using LSU rRNA-targeted oligonucleotide probes and fluorescent whole-cell hybridisation. Phycologia 46:168–177CrossRefGoogle Scholar
  41. Touzet N, Davidson K, Pete R, Flanagan K, McCoy GR, Amzil Z, Maher M, Chapelle A, Raine R (2010) Co-occurrence of the West European (Gr. III) and North American (Gr. I) ribotypes of Alexandrium tamarense (Dinophyceae) in Shetland, Scotland. Protist 161:370–384CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gary R. McCoy
    • 1
  • Nicolas Touzet
    • 1
    • 2
  • Gerard T. A. Fleming
    • 1
  • Robin Raine
    • 1
  1. 1.The Ryan InstituteNational University of Ireland, GalwayGalwayIreland
  2. 2.School of Science, Centre for Environmental Research, Innovation and SustainabilityInstitute of Technology SligoSligoIreland

Personalised recommendations