Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 20, pp 15319–15331 | Cite as

Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia)

  • Olfa Ben SaidEmail author
  • Hela Louati
  • Amel Soltani
  • Hugues Preud’homme
  • Cristiana Cravo-Laureau
  • Patrice Got
  • Olivier Pringault
  • Patricia Aissa
  • Robert Duran
DECAPAGE Project: Hydrocarbon degradation in coastal sediments*

Abstract

Sediments from Bizerta lagoon were used in an experimental microcosm setup involving three scenarios for the bioremediation of anthracene-polluted sediments, namely bioaugmentation, biostimulation, and a combination of both bioaugmentation and biostimulation. In order to investigate the effect of the biotreatments on the benthic biosphere, 16S rRNA gene-based T-RFLP bacterial community structure and the abundance and diversity of the meiofauna were determined throughout the experiment period. Addition of fresh anthracene drastically reduced the benthic bacterial and meiofaunal abundances. The treatment combining biostimulation and bioaugmentation was most efficient in eliminating anthracene, resulting in a less toxic sedimentary environment, which restored meiofaunal abundance and diversity. Furthermore, canonical correspondence analysis showed that the biostimulation treatment promoted a bacterial community favorable to the development of nematodes while the treatment combining biostimulation and bioaugmentation resulted in a bacterial community that advantaged the development of the other meiofauna taxa (copepods, oligochaetes, polychaetes, and other) restoring thus the meiofaunal structure. The results highlight the importance to take into account the bacteria/meiofauna interactions during the implementation of bioremediation treatment.

Keywords

Anthracene Bacteria diversity Bioremediation PAH degraders Microcosms Bizerta lagoon Meiofauna Community structure Degradation 

Notes

Acknowledgments

This work was supported by a funding of the CMCU program (PHC-UTIQUE, n° 09G 0189), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), and the Faculté des Sciences de Bizerte (FSB). We acknowledge the Regional Platform for Environmental Microbiology PREMICE supported by the Aquitaine Regional Government Council (France) and the urban community of Pau-Pyrénées (France). Thanks also to anonymous reviewers for their helpful comments and suggestions.

References

  1. Abbondanzi F, Bruzzi L, Campisi T, Frezzati A, Guerra R, Lacondini A (2006) Biotreatability of polycyclic aromatic hydrocarbons in brackish sediments: preliminary studies of an integrated monitoring. Int Biodeterior Biodegrad 57:214–221CrossRefGoogle Scholar
  2. Agarry SE, Owabor CN (2011) Anaerobic bioremediation of marine sediment artificially contaminated with anthracene and naphthalene. Environ Technol 32:1375–1381CrossRefGoogle Scholar
  3. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265CrossRefGoogle Scholar
  4. Alkemade R, Wielemaker A, De Jong SA, Sandee AJJ (1992) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica leaves. Mar Ecol Prog Ser 90:149–155CrossRefGoogle Scholar
  5. Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033CrossRefGoogle Scholar
  6. Angerer J, Mannschreck C, Gũndel J (1997) Biological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons. J Int Arch Occup Environ Health 70:365–377CrossRefGoogle Scholar
  7. Anthony A, Atwood J, August P, Byron C, Cobb S, Foster C, Fry C, Gold A, Hagos K, Heffner L, Kellogg DQ, Lellis-Dibble K, Opaluch JJ, Oviatt C, Pfeiffer-Herbert A, Rohr N, Smith L, Smythe T, Swift J, Vinhateiro N (2009) Coastal lagoons and climate change: ecological and social ramifications in U.S. Atlantic and Gulf Coast ecosystems. Ecol Soc 14:8Google Scholar
  8. Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not—the Exxon Valdez experience. Microb Biotechnol 2:213–221CrossRefGoogle Scholar
  9. Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Meth 32:155–164CrossRefGoogle Scholar
  10. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  11. Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104:987–997CrossRefGoogle Scholar
  12. Ben Said O, Goni-Urriza M, El Bour M, Aissa P, Duran R (2010) Bacterial community structure of sediments of the Bizerte Lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon. Microb Ecol 59:445–456CrossRefGoogle Scholar
  13. Boonyatumanond R, Wattayakorn G, Togo A, Takada H (2006) Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar Pollut Bull 52:942–956CrossRefGoogle Scholar
  14. Bossert ID, Campeau G (1995) Cleanup of petroleum hydrocarbon contamination in soil. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 77–126Google Scholar
  15. Brion D, Pelletier E (2005) Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere 61:867–876CrossRefGoogle Scholar
  16. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228CrossRefGoogle Scholar
  17. Carman KR, Fleeger JW, Means JC, Pomarico SM, McMillin DJ (1995) Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web. Mar Environ Res 40:289–318CrossRefGoogle Scholar
  18. Castro-Silva C, Ruíz-Valdiviezo VM, Valenzuela-Encinas C, Alcántara-Hernández RJ, Navarro-Noya YE, Vázquez-Núñez E, Luna-Guido M, Marsch R, Dendooven L (2013) The bacterial community structure in an alkaline saline soil spiked with anthracene. Electron J Biotechnol. doi: 10.2225/vol16-issue5-fulltext-14 Google Scholar
  19. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  20. Cheung KC, Zhang JY, Deng HH, Ou YK, Leung HM, Wu SC, Wong MH (2008) Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthracene biodegradation. Bioresour Technol 99:2148–2155CrossRefGoogle Scholar
  21. Cornelissen G, Rigterink H, Ferdinandy M, van Noort PCM (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32:966–970CrossRefGoogle Scholar
  22. Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era. Front Microbiol 5:39Google Scholar
  23. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2003) Influence of bacterivorous nematodes on the decomposition of cordgrass. J Exp Mar Biol Ecol 296:227–242CrossRefGoogle Scholar
  24. De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744CrossRefGoogle Scholar
  25. Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657CrossRefGoogle Scholar
  26. Derouiche A, Sanda YG, Driss MR (2004) Polychlorinated biphenyls in sediments from Bizerte Lagoon, Tunisia. Bull Environ Contam Toxicol 73:810–817CrossRefGoogle Scholar
  27. Duhamel S, Jacquet S (2006) Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Methods 64:316–332CrossRefGoogle Scholar
  28. Duran R, Ranchou-Peyruse M, Menuet V, Monperrus M, Bareille G, Goñi MS, Salvado JC, Amouroux D, Guyoneaud R, Donard OFX, Caumette P (2008) Mercury methylation by a microbial community from sediments of the Adour estuary (Bay of Biscay, France). Environ Pollut 156:951–958CrossRefGoogle Scholar
  29. Erickson RJ, Ankley GT, DeFoe DL, Kosian PA, Makynen EA (1999) Additive toxicity of binary mixtures of phototoxic polycyclic aromatic hydrocarbons to the oligochaete Lumbriculus variegatus. Toxicol Appl Pharmacol 154:97–105CrossRefGoogle Scholar
  30. Flores GP, Badillo CM, Cortazar MH, Hipolito CN, Perez RS, Sanchez IG (2010) Toxic effects of linear alkylbenzene sulfonate, anthracene and their mixture on growth of a microbial consortium isolated from polluted sediment. Rev Int Contam Ambient 26:39–46Google Scholar
  31. Forsyth JV, Tsao YM, Bleam RD (1995) Bioremediation: when is augmentation needed. In: Hinchee RE, Fredrickson J, Alleman BC (eds) Bioaugmentation for site remediation. Battelle, Columbus, pp 1–14Google Scholar
  32. Gandolfi I, Sicolo M, Franzetti A, Fontanarosa E, Santagostino A, Bestetti G (2010) Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresour Technol 101:568–575CrossRefGoogle Scholar
  33. Gomes V, Passos M, Leme NMP, Santos TCA, Campos DYF, Hasue FM, Phan V (2009) Photo-induced toxicity of anthracene in the Antarctic shallow water amphipod, Gondogeneia antarctica. Polar Biol 32:1009–1021Google Scholar
  34. Goni-Urriza MS, Duran R (2010) Impact of pollution on microbial mats. Microbes and communities utilizing hydrocarbons, oils and lipids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, p 2339–2348Google Scholar
  35. Goni-Urriza M, Cravo-Laureau C, Duran R (2013) Microbial bioremediation of aquatic environments. In: Férard JF, Blaise C (eds) Encyclopedia of aquatic ecotoxicology. Springer Science+Business Media, Dordrecht, p 709–720Google Scholar
  36. Guo CL, Zhou HW, Wong YS, Tam NFY (2005) Isolation of PAH degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull 51:1054–1061CrossRefGoogle Scholar
  37. Guyoneaud R, Mouné S, Eatock C, Bothorel V, Hirschler-Réa A, Willison J, Duran R, Liesack W, Herbert R, Matheron R, Caumette P (2002) Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178:315–324Google Scholar
  38. Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63:443–450CrossRefGoogle Scholar
  39. Head IM, Swannell RP (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10:234–239CrossRefGoogle Scholar
  40. Hughes JB, Beckles DM, Chandra SD, Ward CH (1997) Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J Microbiol Biotechnol 18:152–160CrossRefGoogle Scholar
  41. Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643CrossRefGoogle Scholar
  42. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88CrossRefGoogle Scholar
  43. Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530CrossRefGoogle Scholar
  44. Launen LA, Buggs VH, Eastep ME, Enriquez RC, Leonard JW, Blaylock MJ, Huang J-W, Häggblom MM (2002) Bioremediation of polyaromatic hydrocarbon-contaminated sediments in aerated bioslurry reactors. Biorem J 6:125–141CrossRefGoogle Scholar
  45. Lee K, Tremblay GH, Levy EM (1993) Bioremediation: application of slow-release fertilizers on low-energy shorelines. Proceedings of the 1993 Oil Spill Conference. American Petroleum Institute, Washington, DC, pp 449–454Google Scholar
  46. Legendre P, Legendre L (1998) Numerical ecology 20. Elsevier, Amsterdam, pp 1–853Google Scholar
  47. Lin TC, Pan PT, Young CC, Chang JS, Chang TC, Cheng SS (2011) Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ Sci Pollut Res 18:1487–1496CrossRefGoogle Scholar
  48. Losi V, Ferrero TJ, Moreno M, Gaozza L, Rovere A, Firpo M, Marques JC, Albertelli G (2013) The use of nematodes in assessing ecological conditions in shallow waters surrounding a Mediterranean harbour facility. Estuar Coast Shelf Sci 130:209–221CrossRefGoogle Scholar
  49. Louati H, Ben Said O, Got P, Soltani A, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013a) Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). Environ Sci Pollut Res 20:300–310CrossRefGoogle Scholar
  50. Louati H, Ben Said O, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013b) Roles of biological interactions and pollutant contamination in shaping microbial benthic community structure. Chemosphere 93:2535–2546CrossRefGoogle Scholar
  51. Louati H, Ben Said O, Soltani A, Cravo-Laureau C, Preud'Homme H, Duran R, Aissa P, Mahmoudi E, Pringault O (2014a) Impact of low dose anthracene contamination on the diversity of free-living marine benthic nematodes. Ecotoxicology 23:201–211CrossRefGoogle Scholar
  52. Louati H, Ben Said O, Soltani A, Got P, Cravo-Laureau C, Duran R, Aissa P, Pringault O, Mahmoudi E (2014b) Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment. Environ Sci Pollut Res 21:3670–3679CrossRefGoogle Scholar
  53. MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574Google Scholar
  54. MacRae JD, Hall KJ (1998) Biodegradation of polycyclic aromatic hydrocarbons (PAH) in marine sediment under denitrifying conditions. Water Sci Technol 38:177–185CrossRefGoogle Scholar
  55. Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2005) Effects of hydrocarbon contamination on a free living marine nematode community: results from microcosm experiments. Mar Pollut Bull 50:1197–1204CrossRefGoogle Scholar
  56. Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2007) Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol 343:217–226CrossRefGoogle Scholar
  57. Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193Google Scholar
  58. Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165Google Scholar
  59. Mekenyan OG, Ankley GT, Veith GD, Call DJ (1994) Qsars for photoinduced toxicity. 1. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere 28:567–582CrossRefGoogle Scholar
  60. Meysman FJR, Galaktionov OS, Madani S, Middelburg JJ (2005) Modelling biological interactions in aquatic sediments as coupled reactive transport. In: Kristensen E, Haese RR, Kostka JE (eds) Interactions between macro- and microorganisms in marine sediments, coastal and estuarine studies 60, American Geophysical Union, pp 359–388Google Scholar
  61. Mills MA, Bonner JS, McDonald TJ, Page CA, Autenrieth RL (2003) Intrinsic bioremediation of a petroleum impacted wetland. Mar Pollut Bull 46:887–899CrossRefGoogle Scholar
  62. Miyasaka T, Asami H, Watanabe K (2006) Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation 17:227–235CrossRefGoogle Scholar
  63. Moens T, dos Santos GAP, Thompson F, Swings J, Fonseca-Genevois V, Vincx M, De Mesel I (2005) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83CrossRefGoogle Scholar
  64. Morgan P, Watkinson RJ (1989) Hydrocarbon degradation in soils and methods for soil biotreatment. Crit Rev Biotechnol 8:305–333CrossRefGoogle Scholar
  65. Muncnerova D, Augustin J (1994) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresour Technol 48:97–106CrossRefGoogle Scholar
  66. Nascimento FJA, Näslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346Google Scholar
  67. Naslund J, Nascimento FJA, Gunnarsson JS (2010) Meiofauna reduces bacterial mineralization of naphthalene in marine sediment. ISME J 4:1421–1430CrossRefGoogle Scholar
  68. Nkansah MA, Christy AA, Barth T (2011) The use of anthracene as a model compound in a comparative study of hydrous pyrolysis methods for industrial waste remediation. Chemosphere 84:403–408CrossRefGoogle Scholar
  69. Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1:307–320Google Scholar
  70. Paisse S, Goni-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405CrossRefGoogle Scholar
  71. Pringault O, Duran R, Jacquet S, Torreton JP (2008) Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon). Microb Ecol 55:247–258CrossRefGoogle Scholar
  72. Riser-Roberts E (1998) Remediation of petroleum contaminated soils: biological, physical, and chemical processes. Lewis, Boca Raton, pp 5–313CrossRefGoogle Scholar
  73. Roling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613CrossRefGoogle Scholar
  74. Schratzberger M, Daniel F, Wall CM, Kilbride R, Macnaughton SJ, Boyd SE, Rees HL, Lee K, Swannell RPJ (2003) Response of estuarine meio- and macrofauna to in situ bioremediation of oil-contaminated sediment. Mar Pollut Bull 46:430–443CrossRefGoogle Scholar
  75. Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency, Environmental Sciences Division National Exposure Research Laboratory, Las VegasGoogle Scholar
  76. Sese BT, Grant A, Reid BJ (2009) Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans. J Toxicol Environ Health A 72:1168–1180CrossRefGoogle Scholar
  77. Simarro R, González N, Bautista LF, Molina MC (2013) Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. J Hazard Mater 262:158–167CrossRefGoogle Scholar
  78. Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin F-X, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS ONE 8:e65347CrossRefGoogle Scholar
  79. Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014a) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119CrossRefGoogle Scholar
  80. Stauffert M, Cravo-Laureau C, Duran R (2014b) Structure of hydrocarbonoclastic nitrate-reducing bacterial communities in bioturbated coastal marine sediments. FEMS Microbiol Ecol 89(3):580–593CrossRefGoogle Scholar
  81. Swannell RP, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365Google Scholar
  82. Timmermann K, Banta GT, Johnsen AR, Andersen O (2008) Effects of the polychaetes Arenicola marina and Nereis diversicolor on microbial pyrene mineralization. Aquat Microb Ecol 50:197–207CrossRefGoogle Scholar
  83. Trabelsi S, Driss MR (2005) Polycyclic aromatic hydrocarbons in superficial costal sediments from Bizerte lagoon, Tunisia. Mar Pollut Bull 50:344–359CrossRefGoogle Scholar
  84. Traczewska TM (2000) Changes of toxicological properties of biodegradation products of anthracene and phenanthrene. Water Sci Technol 41:31–38Google Scholar
  85. Van Oevelen D, Middelburg JJ, Soetaert K, Moodley L (2006) The fate of bacterial carbon in an intertidal sediment: modeling an in situ isotope tracer experiment. Limnol Oceanogr 51:1302–1314CrossRefGoogle Scholar
  86. Vinas M, Sabate J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018CrossRefGoogle Scholar
  87. Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316CrossRefGoogle Scholar
  88. Yoshida M, Hamdi H, Abdulnasser I, Jedidi N (2002) Contamination of potentially toxic elements (PTEs) in Bizerte lagoon bottom sediments, surface sediment and sediment repository. In: Ghrabi A, Yoshida M (eds) Study on environmental pollution of Bizerte lagoon. INRST-JICA, Tunis, p 139Google Scholar
  89. Yu SH, Ke L, Wong YS, Tam NFY (2005a) Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154CrossRefGoogle Scholar
  90. Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005b) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077CrossRefGoogle Scholar
  91. Zhang SY, Wang QF, Xie SG (2011) Microbial community changes in contaminated soils in response to phenanthrene amendment. Int J Environ Sci Technol 8:321–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Olfa Ben Said
    • 1
    • 2
    • 5
    Email author
  • Hela Louati
    • 1
    • 3
  • Amel Soltani
    • 1
    • 2
  • Hugues Preud’homme
    • 4
  • Cristiana Cravo-Laureau
    • 2
  • Patrice Got
    • 3
  • Olivier Pringault
    • 3
  • Patricia Aissa
    • 1
  • Robert Duran
    • 2
  1. 1.Laboratoire de Biosurveillance de l’EnvironnementFaculté des Sciences de BizerteZarzounaTunisia
  2. 2.Equipe Environnement et Microbiologie—MELODY Group–UMR CNRS IPREM 5254–IBEASUniversité de Pau et des Pays de l’AdourPauFrance
  3. 3.Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS–UM2–IFREMER–IRD–ECOSYMUniversité Montpellier 2MontpellierFrance
  4. 4.Laboratoire Chimie Analytique BioInorganique Environnement—UMR CNRS IPREM 5254–HelioparcUniversité de Pau et des Pays de l’AdourPauFrance
  5. 5.Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology UnitUniversity of CarthageZarzounaTunisia

Personalised recommendations