Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 11, pp 8683–8692 | Cite as

EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta

  • Maria Camilla Baratto
  • Karla Juarez-Moreno
  • Rebecca Pogni
  • Riccardo Basosi
  • Rafael Vazquez-DuhaltEmail author
Research Article

Abstract

The mechanisms of industrial dye transformation by versatile peroxidase were elucidated. Purified versatile peroxidase from Bjerkandera adusta was able to decolorize different classes of dyes including azo and phthalocyanines, but unable to transform any of the anthraquinones tested. Kinetic constants for selected dyes were determined and the transformation products were analyzed by EPR spectroscopy and mass spectrometry. The EPR and MS analyses of the enzymatic decolorization products showed the cleavage of the azo bond in azo dyes and the total disruption of the phthalocyaninic ring in phthalocyanine dyes. The EPR analysis on two copper-containing dyes, reactive violet 5 (azo) and reactive blue 72 (phthalocyanine), showed that the transformation can or not break the metal-ion coordination bond according the dye nature. The role of the catalytic Trp172 in the dye transformation by a long-range electron transfer pathway was confirmed and the oxidation mechanisms are proposed and discussed.

Keywords

Azo dyes Bjerkandera adusta Enzymatic decolorization Phthalocyanines dyes Versatile peroxidase 

Notes

Acknowledgments

We thank Rosa Roman for her technical assistance. This project was funded by the National Council of Science and Technology of Mexico (CONACYT) and the Italian MIUR PRIN 2009 STNWX3 and the Italian CSGI Consortium.

References

  1. Abadulla E, Tzanov T, Costa S, Robra K-H, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl Environ Microbiol 66:3357–3362CrossRefGoogle Scholar
  2. Ayala M, Baratto MC, Basosi R, Vazquez-Duhalt R, Pogni R (2001) Spectroscopic characterization of manganese-lignin peroxidase hybrid isoenzyme produced by Bjerkandera adusta in the absence of manganese: evidence of a protein centred radical by hydrogen peroxide. J Mol Catal B Enzym 16:159–167CrossRefGoogle Scholar
  3. Barr DP, Aust SD (1994) Pollutant degradation by white rot fungi. Environ Contam Toxicol 138:49–72Google Scholar
  4. Blodig W, Smith AT, Winterhalter K, Piontek K (1999) Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch Biochem Biophys 370:86–92CrossRefGoogle Scholar
  5. Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330CrossRefGoogle Scholar
  6. Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772CrossRefGoogle Scholar
  7. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the C beta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:09–827CrossRefGoogle Scholar
  8. Chung K-T, Stevens SE, Cerniglia CE (1992) The reduction of azo dyes y the intestinal microflora. Crit Rev Microbiol 18:175–190CrossRefGoogle Scholar
  9. Coen JJF, Smith AT, Candeias LP, Oakes J (2001) New insights into mechanisms of dye degradation by one-electron oxidation processes. J Chem Soc Perkin Trans 2:2125–2129CrossRefGoogle Scholar
  10. Conneely A, Smyth WF, Mc Mullan G (1999) Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium. FEMS Microbiol Lett 179:333–337CrossRefGoogle Scholar
  11. d’Alessandro N, Tonucci L, Bressan M, Dragani LK, Morvillo A (2003) Rapid and selective oxidation of metallosulfophthalocyanines prior to their usefulness as precatalysts in oxidation reactions. Eur J Inorg Chem 2003:1807–1814CrossRefGoogle Scholar
  12. Davila-Vazquez G, Tinoco R, Pickard MA, Vazquez-Duhalt R (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzym Microb Technol 36:223–231CrossRefGoogle Scholar
  13. Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105CrossRefGoogle Scholar
  14. Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971CrossRefGoogle Scholar
  15. Goodwin TW, Morton RA (1946) The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J 40:628–632Google Scholar
  16. Goszczynski S, Paszczynski A, Pasti-Grigsby MB, Crawford RL, Crawford DL (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347Google Scholar
  17. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952Google Scholar
  18. Heinfling A, Bergbauer M, Szewzyk U (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 48:261–266CrossRefGoogle Scholar
  19. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998a) Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50CrossRefGoogle Scholar
  20. Heinfling A, Ruiz-Dueñas J, Martinez MJ, Bergbauer M, Szewzyk U, Martinez AT (1998b) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146CrossRefGoogle Scholar
  21. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998c) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793Google Scholar
  22. Heinfling-Weidtmann A, Reemtsma T, Storm T, Szewzyk U (2001) Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta. FEMS Microbiol Lett 203:179–183CrossRefGoogle Scholar
  23. Holcapek M, Jandera P, Prikryl J (1999) Analysis of sulphonated dyes and intermediates by electrospray mass spectrometry. Dye Pigment 43:127–137CrossRefGoogle Scholar
  24. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12CrossRefGoogle Scholar
  25. Jarosz-Wilkolazka A, Kochmanska-Rdest J, Malarczyk E, Wardas W, Leonowicz A (2002) Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzym Microb Technol 30:66–557CrossRefGoogle Scholar
  26. Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wartishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci U S A 96:1989–1994CrossRefGoogle Scholar
  27. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035Google Scholar
  28. Lopez C, Moreira MT, Feijoo G, Lema JM (2004) Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor. Biotechnol Prog 20:74–81CrossRefGoogle Scholar
  29. Martinez MJ, Ruiz-Duenas FJ, Guillen F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432CrossRefGoogle Scholar
  30. Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417CrossRefGoogle Scholar
  31. Moawad H, El-Rahim WM, Khalafallah M (2003) Evaluation of biotoxicity of textile dyes using two bioassays. J Basic Microbiol 43:218–229CrossRefGoogle Scholar
  32. Morales M, Mate MJ, Romero A, Martínez MJ, Martínez AT, Ruiz-Dueñas FJ (2012) Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 287:41053–41067CrossRefGoogle Scholar
  33. Moreira MT, Mielgo I, Feijoo G, Lema JM (2000) Evaluation of different fungal strains in the decolourisation of sythetic dyes. Biotechnol Lett 22:1499–1503CrossRefGoogle Scholar
  34. Moreira PR, Bouillenne F, Almeida-Vara E, Malcata FX, Frère JM, Cardoso Duarte J (2006) Purification, kinetics and spectral characterisation of a new versatile peroxidase from a Bjerkandera sp. isolate. Enzym Microb Technol 38:28–33CrossRefGoogle Scholar
  35. Paszczynski A, Pasti-Grigsby MB, Goszczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604Google Scholar
  36. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dye Pigment 58:179–196CrossRefGoogle Scholar
  37. Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116CrossRefGoogle Scholar
  38. Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R (2005) Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44:4267–4274CrossRefGoogle Scholar
  39. Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 281:9517–9526Google Scholar
  40. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33CrossRefGoogle Scholar
  41. Rakhit G, Antholine WE, Froncisz W, Hyde JS, Pilbrow JR, Sinclair JR, Sarkar B (1985) Direct evidence of nitrogen coupling in the copper(II) complex of bovine serum albumin by S-band electron spin resonance technique. J Inorg Biochem 25:217–224CrossRefGoogle Scholar
  42. Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328CrossRefGoogle Scholar
  43. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255CrossRefGoogle Scholar
  44. Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dyes decolorization by laccases from ligninolytic fungi. Curr Microbiol 39:27–32CrossRefGoogle Scholar
  45. Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999a) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235CrossRefGoogle Scholar
  46. Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999b) Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn(2+) and different aromatic substrates. Appl Environ Microbiol 65:4705–4707Google Scholar
  47. Ruiz-Dueñas FJ, Morales M, Gracía E, Miki Y, Martinez MJ, Martinez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452CrossRefGoogle Scholar
  48. Sarkar S, Martinez AT, Martinez MJ (1997) Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim Biophys Acta 1339:23–30CrossRefGoogle Scholar
  49. Shin K, Oh I, Kim C (1997) Production and purification of remazol brilliant blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748Google Scholar
  50. Spadaro JT, Renganathan V (1994) Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse yellow 3 degradation. Arch Biochem Biophys 312:301–307CrossRefGoogle Scholar
  51. Spande TF, Witkop B (1967) Determination of the tryptophan content of proteins with N-bromosuccinimide. Methods Enzymol 11:498–506Google Scholar
  52. Taboada-Puig R, Lú-Chau T, Eibes G, Moreira MT, Feijoo G, Lema JM (2011) Biocatalytic generation of Mn(III)-chelate as a chemical oxidant of different environmental contaminants. Biotechnol Prog 27:668–676CrossRefGoogle Scholar
  53. ten Have R, Teunissen PJ (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:2297–3413Google Scholar
  54. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–248Google Scholar
  55. Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T (2008) Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2. Appl Environ Microbiol 74:2873–2881CrossRefGoogle Scholar
  56. Vazquez-Duhalt R, Westlake DWS, Fedorak PM (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 60:459–466Google Scholar
  57. Wang Y, Vazquez-Duhalt R, Pickard MA (2001) Effect of growth conditions on the production of manganese peroxidase by three strains of Bjerkandera adusta. Can J Microbiol 47:277–282CrossRefGoogle Scholar
  58. Wang Y, Vazquez-Duhalt R, Pickard MA (2002) Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr Microbiol 43:77–87CrossRefGoogle Scholar
  59. Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polyaromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49:675–682CrossRefGoogle Scholar
  60. Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem 267:23688–23695Google Scholar
  61. Wesenberg D, Kyriakidos I, Agathos SN (2003) White-rot fungi and their enzymes from the treatment of industrial dye effluent. Biotechnol Adv 22:161–187CrossRefGoogle Scholar
  62. Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry 36:9766–9773CrossRefGoogle Scholar
  63. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maria Camilla Baratto
    • 1
  • Karla Juarez-Moreno
    • 2
  • Rebecca Pogni
    • 1
  • Riccardo Basosi
    • 1
  • Rafael Vazquez-Duhalt
    • 2
    Email author
  1. 1.Department of Biotechnology, Chemistry, and PharmacyUniversity of SienaSienaItaly
  2. 2.Center for Nanosciences and Nanotechnology-UNAMEnsenadaMexico

Personalised recommendations