Environmental Science and Pollution Research

, Volume 22, Issue 10, pp 7859–7872 | Cite as

Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS

  • Andrés Rodríguez-Seijo
  • Daniel Arenas-Lago
  • María Luisa AndradeEmail author
  • Flora A. Vega
Research Article


Lead pollution was evaluated in 17 urban soils from parks and gardens in the city of Vigo (NW Spain). The Pb isotope ratios (207Pb/206Pb, 208Pb/204Pb, 206Pb/204Pb and 208Pb/206Pb) were determined after being measured by MC-ICP-MS. The association of the isotopes (204Pb, 206Pb, 207Pb and 208Pb) with the different components of the soil was studied using TOF-SIMS. The isotopic ranges obtained for the samples were between 1.116 and 1.203 (206Pb/207Pb), 2.044–2.143 (208Pb/206Pb), 37.206–38.608 (208Pb/204Pb), 15.5482–15.6569 (207Pb/204Pb) and 17.357–18.826 (206Pb/204Pb). The application of the three-end-member model indicates that the Pb derived from petrol is the main source of Pb in the soils (43.51 % on average), followed by natural or geogenic Pb (39.12 %) and industrial emissions (17.37 %). The emissions derived from coal combustion do not appear to influence the content of Pb in the soil. TOF-SIMS images show that the Pb mainly interacts with organic matter. This technique contributes to the understanding of the association of anthropogenic Pb with the components of the soil, as well as the particle size of these associations, thus allowing the possible sources of Pb to be identified.


Lead stable isotope Urban soils TOF-SIMS MC-ICP-MS Three-end-member model Roadside soils 



We would like to thank the Xunta de Galicia for financing the project EM2013/018. Vega, F.A. and Arenas-Lago, D. thank the Ministry of Science and Innovation and the Universidade of Vigo for the Ramón and Cajal grant and for the FPI-MICINN, respectively. We thank Li, H. for his help with the application of the three-end-member model and the Council of Vigo (Spain) for their help with the sample collection.

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

11356_2014_4027_MOESM1_ESM.pdf (98 kb)
ESM 1 (PDF 97 kb)


  1. Abril GA, Wannaz ED, Mateos AC, Pignata ML (2014) Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results. Atmos Environ 82:154–163. doi: 10.1016/j.atmosenv.2013.10.020 CrossRefGoogle Scholar
  2. Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143. doi: 10.1007/s11270-010-0372-6 CrossRefGoogle Scholar
  3. Alleman L (1997) Apport des isotopes stables du plomb au suivi des traces métalliques en Méditerranée et en Atlantique Nord. Ph.D., Thesis. University of Aix-Marseille III (in French)Google Scholar
  4. Álvarez-Iglesias P, Quintana B, Rubio B, Pérez-Arlucea M (2007) Sedimentation rates and trace metal input history in intertidal sediments derived from 210Pb and 137Cs chronology. J Environ Radioact 98:229–250. doi: 10.1016/j.jenvrad.2007.05.001 CrossRefGoogle Scholar
  5. Álvarez-Iglesias P, Rubio B, Millos J (2012) Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain). Sci Total Environ 437:22–35. doi: 10.1016/j.scitotenv.2012.07.063 CrossRefGoogle Scholar
  6. Arenas-Lago D, Andrade ML, Lago-Vila M, Rodríguez-Seijo A, Vega FA (2014) Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma 230–231:108–118. doi: 10.1016/j.geoderma.2014.04.011 CrossRefGoogle Scholar
  7. Barbaste M, Halicz L, Galy A, Medina B, Emteborg H, Adams FC, Lobinski R (2001) Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-flight analyzers. Talanta 54(2):307–317. doi: 10.1016/S0039-9140(00)00651-2 CrossRefGoogle Scholar
  8. Cerqueira B, Vega FA, Serra C, Silva LFO, Andrade ML (2011) Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu 2+ and Cu 2+/Pb 2+ on a Bt horizon surfaces. J Hazard Mater 195:422–431. doi: 10.1016/j.jhazmat.2011.08.059 CrossRefGoogle Scholar
  9. Chen J, Tan M, Li Y, Zhang Y, Lu W, Tong Y et al (2005) A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos Environ 39:1245–1253. doi: 10.1016/j.atmosenv.2004.10.041 CrossRefGoogle Scholar
  10. Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158:1134–1146. doi: 10.1016/j.envpol.2009.12.028 CrossRefGoogle Scholar
  11. Chiaradia M, Cupelin F (2000) Behaviour of airborne lead and temporal variations of its source effects in Geneva (Switzerland): comparison of anthropogenic versus natural processes. Atmos Environ 34:959–971. doi: 10.1016/S1352-2310(99)00213-7 CrossRefGoogle Scholar
  12. Clark HF, Hausladen DM, Brabander DJ (2008) Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design. Environ Res 107:312–319. doi: 10.1016/j.envres.2008.03.003 CrossRefGoogle Scholar
  13. Instituto Geográfico Nacional de España (2014) Base Cartográfica Numérica 1:25.000 (BCN25), Base Topográfica Nacional 1:25.000 (BTN25). Cedido por © Instituto Geográfico Nacional de España. Accessed 22 May 2014Google Scholar
  14. De la Cruz MTC, Laborda F, Callén MS, López JM, Mastral AM (2009) Study of Pb sources by Pb isotope ratios in the airborne PM10 of Zaragoza, Spain. J Environ Monit 11:2052–2057. doi: 10.1039/B912274E CrossRefGoogle Scholar
  15. Díaz-Somoano M, Suárez-Ruiz I, Alonso JIG, Ruiz Encinar J, López-Antón MA, Martínez-Tarazona MR (2007) Lead isotope ratios in Spanish coals of different characteristics and origin. Int J Coal Geol 71:28–36. doi: 10.1016/j.coal.2006.05.006 CrossRefGoogle Scholar
  16. Erel Y, Veron A, Halicz L (1997) Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochim Cosmochim Acta 61:4495–4505. doi: 10.1016/S0016-7037(97)00353-0 CrossRefGoogle Scholar
  17. Ettler V, Mihaljevič M, Komárek M (2004) ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution. Anal Bioanal Chem 378:311–317. doi: 10.1007/s00216-003-2229-y CrossRefGoogle Scholar
  18. European Directive 98/70/EC (1998) Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC. Official Journal L 350, 28 December 1998, pp 58–68Google Scholar
  19. Farmer JG, Broadway A, Cave MR, Wragg J, Fordyce FM, Graham MC et al (2011) A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Sci Total Environ 409:4958–4965. doi: 10.1016/j.scitotenv.2011.08.061 CrossRefGoogle Scholar
  20. Flegal AR, Smith DR (1995) Measurements of environmental lead contamination and human exposure. Rev Environ Contam Toxicol 143:1–45. doi: 10.1007/978-1-4612-2542-3_1 Google Scholar
  21. Frostick A, Bollhöfer A, Parry D, Munksgaard N, Evans K (2008) Radioactive and radiogenic isotopes in sediments from Cooper Creek, Western Arnhem land. J Environ Radioact 99:468–482. doi: 10.1016/j.jenvrad.2007.08.015 CrossRefGoogle Scholar
  22. Galušková I, Mihaljevič M, Borůvka L, Drábek O, Frühauf M, Němeček K (2014) Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. J Geochem Explor. doi: 10.1016/j.gexplo.2014.02.022 Google Scholar
  23. Hamester M, Stechmann H, Steiger M, Dannecker W (1994) The origin of lead in urban aerosols—a lead isotopic ratio study. Sci Total Environ 146–47:321–323. doi: 10.1016/0048-9697(94)90252-6 CrossRefGoogle Scholar
  24. Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608. doi: 10.2136/sssaj1986.03615995005000030013x CrossRefGoogle Scholar
  25. Inter-organization programme for the sound management of chemicals (IOMC) (1998) Global opportunities for reducing the use of leaded gasoline. Geneva, Switzerland: United Nations Environment Programme (UNEP Chemicals). Accessed 12 April 2014Google Scholar
  26. Kabata-Pendias A (2010) Trace elements in soils and plants, fourth ed. CRC, New York. doi: 10.1201/b10158 CrossRefGoogle Scholar
  27. Komárek M, Ettler V, Chrastny V, Mihaljevic M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577. doi: 10.1016/j.envint.2007.10.0055 CrossRefGoogle Scholar
  28. Kylander ME, Klaminder J, Bindler R, Weiss DJ (2010) Natural lead isotope variations in the atmosphere. Earth Planet Sci Lett 290:44–53. doi: 10.1016/j.epsl.2009.11.055 CrossRefGoogle Scholar
  29. Li H-b, Yu S, Li G-l, Deng H, Luo X-S (2011) Contamination and source differentiation of Pb in park soils along an urban–rural gradient in Shanghai. Environ Pollut 159:3536–3344. doi: 10.1016/j.envpol.2011.08.013 CrossRefGoogle Scholar
  30. Li H-b, Yu S, Li G-l, Deng H (2012) Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 88:1161–1169. doi: 10.1016/j.chemosphere.2012.03.061 CrossRefGoogle Scholar
  31. Macías F, Calvo de Anta R (2009) Niveles Genéricos de Referencia de Metales Pesados y otros elementos de traza en suelos de Galicia. Xunta de Galicia (in Spanish), Santiago de CompostelaGoogle Scholar
  32. Martínez Cortizas A, Peiteado Varela E, Bindler R, Biester H, Cheburkin A (2012) Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochim Cosmochim Acta 82:68–78. doi: 10.1016/j.gca.2010.12.025 CrossRefGoogle Scholar
  33. Mielke HW, Laidlaw MAS, Gonzales CR (2011) Estimation of leaded (Pb) gasoline’s continuing material and health impacts on 90 US urbanized areas. Environ Int 37:248–257. doi: 10.1016/j.envint.2010.08.006 CrossRefGoogle Scholar
  34. Millot R, Allègre CJ, Gaillardet J, Roy S (2004) Lead isotopic systematic of major river sediments: a new estimate of the Pb isotopic composition of the upper continental crust. Chem Geol 203:75–90. doi: 10.1016/j.chemgeo.2003.09.00 CrossRefGoogle Scholar
  35. Monna F, Lancelot J, Croudace IW, Cundy AB, Lewis JT (1997) Pb isotopic composition of airborne particulate material from France and the Southern United Kingdom: implications for Pb pollution sources in urban areas. Environ Sci Technol 31:2277–2286. doi: 10.1021/es960870+ CrossRefGoogle Scholar
  36. Monna F, Aiuppa A, Varrica D, Dongarra G (1999) Pb isotope composition in lichens and aerosols from eastern Sicily: insights into the regional impact of volcanoes on the environment. Environ Sci Technol 33:2517–2523. doi: 10.1021/es9812251 CrossRefGoogle Scholar
  37. Morton-Bermea O, Rodríguez-Salazar MT, Hernández-Álvarez E, García-Arreola ME, Lozano-Santacruz R (2011) Lead isotopes as tracers of anthropogenic pollution in urban topsoils of Mexico City. Chem Erde Geochem 71:189–195. doi: 10.1016/j.chemer.2011.03.003 CrossRefGoogle Scholar
  38. Mukai H, Furuta N, Fujii T, Ambe Y, Sakamoto K, Hashimoto Y (1993) Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ Sci Technol 27:1347–1356. doi: 10.1021/es00044a009 CrossRefGoogle Scholar
  39. QGIS Development Team (2014) QGIS Geographic Information System. Open Source Geospatial Foundation Project. Accessed 22 January 2014Google Scholar
  40. Renson V, Coenaerts J, Nys K, Mattielli N, Vanhaecke F, Fagel N et al (2011) Lead isotopic analysis for the identification of late bronze age pottery from Hala sultan tekke (Cyprus). Archaeometry 53:37–57. doi: 10.1111/j.1475-4754.2010.00535.x CrossRefGoogle Scholar
  41. Rogowski J, Bem H (2007) Surface analysis of the size-fractioned urban aerosols by secondary ion mass spectrometry (ToF-SIMS). Cent Eur J Chem 132:132–143. doi: 10.2478/s11532-006-0066-5 CrossRefGoogle Scholar
  42. Slattery W, Conyers M, Aitken R (1999) Soil pH, aluminum, manganese and lime requirement. In: Peverill KI, Sparrow L, Reuter D (eds) Soil analysis: an interpretation manual. CSIRO, Australia, pp 103–125Google Scholar
  43. Sutherland RA (2003) Lead in grain size fractions of road-deposited sediment. Environ Pollut 121:229–237. doi: 10.1016/S0269-7491(02)00219-1 CrossRefGoogle Scholar
  44. Szynkowska MI, Pawlaczyk A, Rogowski J (2008) ToF-SIMS and SEM-EDS analysis of the surface of chosen bioindicators. Appl Surf Sci 255:1165–1169. doi: 10.1016/j.apsusc.2008.05.148 CrossRefGoogle Scholar
  45. Tan MG, Zhang GL, Li XL, Zhang YX, Yue WS, Chen JM et al (2006) Comprehensive study of lead pollution in Shanghai by multiple techniques. Anal Chem 78:8044–8050. doi: 10.1021/ac061365q CrossRefGoogle Scholar
  46. Tomašević M, Vukmirović Z, Rajšić S, Tasić M, Stevanović B (2005) Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere 61:753–760. doi: 10.1016/j. chemosphere .2005.03.077 CrossRefGoogle Scholar
  47. Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38. doi: 10.1097/00010694-193401000-00003 CrossRefGoogle Scholar
  48. Walraven N, van Os BJH, Klaver G, Middelburg JJ, Davies GR (2014) The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci Total Environ 472:888–900. doi: 10.1016/j.scitotenv.2013.11.110 CrossRefGoogle Scholar
  49. Xie RK, Seip HM, Liu L, Zhang DS (2009) Characterization of individual airborne particles in Taiyuan City, China. Air Qual Atmos Health 2:123–131. doi: 10.1007/s11869-009-0039-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrés Rodríguez-Seijo
    • 1
  • Daniel Arenas-Lago
    • 1
  • María Luisa Andrade
    • 1
    Email author
  • Flora A. Vega
    • 1
  1. 1.Department of Plant Biology and Soil ScienceUniversidade de VigoVigoSpain

Personalised recommendations