Environmental Science and Pollution Research

, Volume 22, Issue 11, pp 8412–8424 | Cite as

Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver

  • Aridane G. González
  • Stéphane Mombo
  • Joséphine Leflaive
  • Alexandre Lamy
  • Oleg S. Pokrovsky
  • Jean-Luc Rols
Research Article


Due to the significant increase in nanoparticle production and especially that of silver nanoparticles over the past decade, the toxicity of silver in both ionic (Ag+) and nanoparticulate (AgNPs) form must be studied in detail in order to understand their impact on natural ecosystems. A comparative study of the effect of AgNPs and ionic silver on two independent phototrophic biofilms was conducted in a rotating annular bioreactor (RAB) operating under constant conditions. The concentration of dissolved silver in the inlet solution was progressively increased every 4 days of exposure, from 0.1 to 100 μg L−1. In the course of the 40-day experiment, biofilm samples were collected to determine the evolution of biomass, chlorophyll-a, as well as photosynthetic and heterotrophic enzymatic activities in response to silver addition. Analysis of both dissolved and particulate silver allowed quantification of the distribution coefficient and uptake rate constants. The presence of both AgNPs and Ag+ produced significant changes in the biofilm structure, decreasing the relative percentage of Diatomophyceae and Cyanophyceae and increasing the relative percentage of Chlorophyceae. The accumulation capacity of the phototrophic biofilm with respect to ionic silver and the corresponding distribution coefficients were an order of magnitude higher than those of the phototrophic biofilm with respect to AgNPs. Higher levels of AgNPs decreased the biomass from 8.6 ± 0.2 mg cm−2 for 0–10 μg L−1 AgNPs to 6.0 ± 0.1 mg cm−2 for 100 μg L−1 added AgNPs, whereas ionic silver did not have any toxic effect on the biofilm growth up to 100 μg L−1 of added Ag+. At the same time, AgNPs did not significantly affect the photosynthetic activity of the biofilm surface communities compared to Ag+. It can thus be hypothesized that negatively charged AgNPs may travel through the biofilm water channels, thereby affecting the whole biofilm structure. In contrast, positively charged Ag+ is bound at the cell surfaces and EPS, thus blocking its further flux within the biofilm layers. On the whole, the phototrophic biofilm demonstrated significant capacities to accumulate silver within the surface layers. The main mechanism to avoid the toxic effects is metal complexation with exopolysaccharides and accumulation within cell walls, especially pronounced under Ag+ stress. The significant AgNPs and Ag+ uptake capacities of phototrophic biofilm make it a highly resistant ecosystem in silver-polluted river waters.


AgNPs Ionic silver Phototrophic biofilm Bioreactor 



This research work has been supported by Midi-Pyrénées Regional Council (France) within the program Gagilau (NoDAER-R93 90173), funding the postdoctoral fellowship for Aridane G. González. Support from BIO-GEO-CLIM grant of Russian Ministry of Science and Education (No. 14.B25.31.0001) and ANR CITTOXIC Nano are equally acknowledged.

Supplementary material

11356_2014_3978_MOESM1_ESM.docx (358 kb)
ESM 1 (DOCX 358 kb)


  1. Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13:986–991CrossRefGoogle Scholar
  2. Barriada JL, Tappin AD, Evans EH, Achterberg EP (2007) Dissolved silver measurements in seawater. TrAC Trends Anal Chem 26:809–817CrossRefGoogle Scholar
  3. Battin TJ, Kaplan LA, Newbold JD, Cheng X, Hansen C (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452CrossRefGoogle Scholar
  4. Borrok D, Fein JB (2004) Distribution of protons and Cd between bacterial surfaces and dissolved humic substances determined through chemical equilibrium modelling. Geochim Cosmochim Acta 68:3043–3052CrossRefGoogle Scholar
  5. Boston H, Hill W (1991) Photosynthesis-light relations of stream periphyton communities. Limnol Oceanogr 36:644–656CrossRefGoogle Scholar
  6. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interf 110:49–74CrossRefGoogle Scholar
  7. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156CrossRefGoogle Scholar
  8. Carlson C, Hussain S, Schrand A, Braydich-Stolle L, Hess K, Jones R, Schlager J (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefGoogle Scholar
  9. Chen C, Wen D, Wang J (2014) Cellular surface characteristics of Saccharomyces cerevisiae before and after Ag(I) biosorption. Bioresour Technol 156:380–383CrossRefGoogle Scholar
  10. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  11. Dimkpa CO, Calder A, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011) Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 188:428–435CrossRefGoogle Scholar
  12. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRefGoogle Scholar
  13. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290CrossRefGoogle Scholar
  14. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  15. Fein JB, Martin AM, Wightman PG (2001) Metal adsorption onto bacterial surfaces: development of a predictive approach. Geochim Cosmochim Acta 65:4267–4273CrossRefGoogle Scholar
  16. Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  17. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636Google Scholar
  18. Flegal AR, Brown CL, Squire S, Ross JRM, Scelfo GM, Hibdon S (2007) Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environ Res 105:34–52CrossRefGoogle Scholar
  19. Frattini A, Pellegri N, Nicastro D, Sanctis OD (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152CrossRefGoogle Scholar
  20. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359Google Scholar
  21. González AG, Pokrovsky O (2014) Metal adsorption on mosses: toward a universal adsorption model. J Colloid Interface Sci 415:169–178CrossRefGoogle Scholar
  22. González AG, Shirokova LS, Pokrovsky OS, Emnova EE, Martinez RE, Santana-Casiano JM, González-Dávila M, Pokrovski GS (2010) Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. J Colloid Interface Sci 350:305–314CrossRefGoogle Scholar
  23. González AG, Pokrovsky OS, Jimenez-Villacorta F, Shirokova LS, Santana Casiano JM, González- Davila M, Emnova E (2014) Iron adsorption onto soil and aquatic bacteria: XAS structural study. Chem Geol 372:32–45CrossRefGoogle Scholar
  24. González-Dávila M (1995) The role of phytoplankton cells on the control of heavy metal concentration in seawater. Mar Chem 48:215–236CrossRefGoogle Scholar
  25. Gou N, Onnis-Hayden A, Gu AZ (2010) Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol 44:5964–5970CrossRefGoogle Scholar
  26. Ha J, Gelabert A, Spormann AM, Brown GE Jr (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15CrossRefGoogle Scholar
  27. He W, Zhou Y-T, Wamer WG, Boudreau MD, Yin J-J (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–7555CrossRefGoogle Scholar
  28. Hillebrand H, Sommer U (2000) Diversity of benthic microalgae in response to colonization time and eutrophication. Aquat Bot 67:221–236CrossRefGoogle Scholar
  29. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750CrossRefGoogle Scholar
  30. Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716CrossRefGoogle Scholar
  31. Kachynski AV, Kuzmin AN, Nyk M, Roy I, Prasad PN (2008) Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J Phys Chem C 112:10721–10724CrossRefGoogle Scholar
  32. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloid Surf B 79:340–344CrossRefGoogle Scholar
  33. Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  34. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175CrossRefGoogle Scholar
  35. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924CrossRefGoogle Scholar
  36. Martinez RE, Pokrovsky OS, Schott J, Oelkers EH (2008) Surface charge and zeta-potential of metabolically active and dead cyanobacteria. J Colloid Interface Sci 323:317–325CrossRefGoogle Scholar
  37. Maynard A, Michelson E (2006) The nanotechnology consumer products inventory. Woodrow Wilson International Center for Scholars, Washington, DC, 23Google Scholar
  38. Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE 5:e.15196CrossRefGoogle Scholar
  39. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nano-Nanotechnol 8:916–924CrossRefGoogle Scholar
  40. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976CrossRefGoogle Scholar
  41. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346CrossRefGoogle Scholar
  42. Murdock JN, Dodds WK (2007) Linking benthic algal biomass to stream substratum topography. J Phycol 43:449–460CrossRefGoogle Scholar
  43. Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao A-J, Quigg A, Santschi P, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  44. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  45. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  46. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183CrossRefGoogle Scholar
  47. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823CrossRefGoogle Scholar
  48. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85CrossRefGoogle Scholar
  49. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  50. Paule A, Lyautey E, Garabetian F, Rols J-L (2009) Autogenic versus environmental control during development of river biofilm. J Limnol 45:1–10CrossRefGoogle Scholar
  51. Paule A, Lauga B, Ten-Hage L, Morchain J, Duran R, Paul E, Rols J-L (2011) A photosynthetic rotating annular bioreactor (Taylor–Couette type flow) for phototrophic biofilm cultures. Water Res 45:6107–6118CrossRefGoogle Scholar
  52. Pavasupree S, Ngamsinlapasathian S, Nakajima M, Suzuki Y, Yoshikawa S (2006) Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J Photochem Photobiol A 184:163–169CrossRefGoogle Scholar
  53. Perelaer J, Hendriks CE, de Laat AW, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:165303CrossRefGoogle Scholar
  54. Pokrovsky OS, Martinez RE, Golubev SV, Kompantseva EI, Shirokova LS (2008) Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: a surface speciation approach. Appl Geochem 23:2574–2588CrossRefGoogle Scholar
  55. Pokrovsky OS, Feurtet-Mazel A, Martinez RE, Morin S, Baudrimont M, Duong T, Coste M (2010) Experimental study of cadmium interaction with periphytic biofilms. Appl Geochem 25:418–427CrossRefGoogle Scholar
  56. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on Gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloid Surf B 102:300–306CrossRefGoogle Scholar
  57. Ranjard L, Poly F, Lata J-C, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487CrossRefGoogle Scholar
  58. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  59. Richaume A, Pourcelot A, Rama R, Nazaret S (2006) Évaluation des modifications quantitatives, qualitatives et fonctionnelles induites par la conservation de consortiums bactériens extraits de sols. Les actes du BRG 371–389Google Scholar
  60. Rico M, López A, Santana-Casiano JM, González AG, González-Dávila M (2013) Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr 58:144–152CrossRefGoogle Scholar
  61. Sañudo-Wilhelmy SA, Flegal AR (1992) Anthropogenic silver in the Southern California Bight: a new tracer of sewage in coastal waters. Environ Sci Tech 26:2147–2151CrossRefGoogle Scholar
  62. Schultz A, Boyle D, Chamot D, Ong K, Wilkinson K, McGeer J, Sunahara G, Goss G (2014) Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ Chem 11:207–226CrossRefGoogle Scholar
  63. SCOR-Unesco (1996) Determination of photosynthetic pigments in seawater. Monographs on Oceanographic Methodology, vol 1. Unesco, Paris, pp 11–18Google Scholar
  64. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  65. Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610CrossRefGoogle Scholar
  66. Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  67. van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33CrossRefGoogle Scholar
  68. Wigginton NS, Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:2163–2168CrossRefGoogle Scholar
  69. Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aridane G. González
    • 1
    • 2
    • 3
  • Stéphane Mombo
    • 1
    • 2
  • Joséphine Leflaive
    • 1
    • 2
  • Alexandre Lamy
    • 1
    • 2
  • Oleg S. Pokrovsky
    • 3
    • 4
  • Jean-Luc Rols
    • 1
    • 2
  1. 1.Université de Toulouse; UPS, INP; EcoLab (Laboratoire Écologie Fonctionnelle et Environnement)ToulouseFrance
  2. 2.EcoLab; CNRSToulouseFrance
  3. 3.Université de Toulouse; UPS; GET (Géosciences Environnement Toulouse) UMR 5563 CNRSToulouseFrance
  4. 4.BIO-GEO-CLIM LaboratoryTomsk State UniversityTomskRussia

Personalised recommendations