Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 9, pp 7101–7111 | Cite as

Human exposure to mercury in artisanal small-scale gold mining areas of Kedougou region, Senegal, as a function of occupational activity and fish consumption

  • Birane NianeEmail author
  • Stéphane Guédron
  • Robert Moritz
  • Claudia Cosio
  • Papa Malick Ngom
  • Naresh Deverajan
  • Hans Rudolf Pfeifer
  • John Poté
Research Article

Abstract

We investigated mercury (Hg) exposure of food web and humans in the region of Kedougou, Senegal, where Hg is used for gold amalgamation in artisanal small-scale gold mining (ASGM). For this purpose, total mercury (THg) concentration was determined in eight fish species and two shellfish species from Gambia River and in human hair from 111 volunteers of different age and sex, living in urban locations (Kedougou and Samekouta) or in ASGM areas (Tinkoto and Bantako). THg concentrations in fish samples range from 0.03 to 0.51 mg kg−1 wet weight (ww) and 0.5 to 1.05 mg kg−1 ww for shellfish. THg concentrations in fish are below the WHO guideline of 0.5 mg kg−1 ww, whereas 100 % of shellfish are above this safety guideline. In the entire set of fish and shellfish samples, we documented a decrease of THg concentrations with increasing selenium to mercury (Se:Hg) ratio suggesting a protection of Se against Hg. However, local population consuming fish from the Gambia River in the two ASGM areas have higher THg concentrations (median = 1.45 and 1.5 mg kg−1 at Bantako and Tinkoto) in hair than those from others localities (median = 0.42 and 0.32 mg kg−1 at Kedougou town and Samekouta) who have diverse diets. At ASGM sites, about 30 % of the local population present Hg concentrations in hair exceeding 1 mg kg−1, defined as the reference concentration of Hg in hair. We also evidence a higher exposure of women to Hg in the Tinkoto ASGM site due to the traditional distribution of daily tasks where women are more involved in the burning of amalgams. The discrepancy between the calculated moderate exposure through fish consumption and the high Hg concentrations measured in hair suggest that fish consumption is not the only source of Hg exposure and that further studies should focus on direct exposure to elemental Hg of population living at ASGM sites.

Keywords

Artisanal gold mining Mercury Methylmercury Selenium Fish Human health risk 

Notes

Acknowledgments

The authors thank the Lombard Foundation (Geneva, Switzerland), Schmidheiny Foundation (Geneva, Switzerland) and Sida-UNESCO project 503RAF2000 for financing the study; and the Geological Survey of Senegal (DMG), University Cheikh Anta Diop (Dakar), Dr Diongue and the team of Kedougou hospital and RandGold Company Senegal for their logistic help; and Dr Sarr of the Animal Biology Department at the University Cheikh Anta Diop for fish identification.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health ServiceGoogle Scholar
  2. Adimado AA, Baah DA (2002) Mercury in human blood, urine, hair, nail, and fish from the Ankobra and Tano River basins in southwestern Ghana. Bull Environ Contam Toxicol 68:339–346CrossRefGoogle Scholar
  3. Agusa T, Kunito T, Iwata H, Monirith I, Tana T, Subramanian A, Tanabe S (2005) Mercury contamination in human hair and fish from Cambodia: levels, specific accumulation and risk assessment. Environ Pollut 134:79–86CrossRefGoogle Scholar
  4. Airey D (1983) Mercury in human hair due to environment and diet: a review. Environ Health Perspect 52:303–316CrossRefGoogle Scholar
  5. Barbosa AC, Jardim W, Dorea JG, Fosberg B, Souza J (2001) Hair mercury speciation as a function of gender, age, and body mass index in inhabitants of the Negro River basin, Amazon, Brazil. Arch. Environ. Contam. Toxicol.40:439–444Google Scholar
  6. Bassot JP (1997) Albitisations dans le Paléoprotérozoïque de l’Est du Sénégal: relations avec les minéralisations ferrifères de la rive gauche de la Falémé. J Afr Earth Sci 25:353–367CrossRefGoogle Scholar
  7. Bjornberg KA, Vahter M, Berglund B (2005) Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant. Environ Health Perspect 113:1381–1385CrossRefGoogle Scholar
  8. Black FJ, Bokhutlo T, Somoxa A, Maethamako M, Modisaemang O, Kemosedile T, Cobb-Adams C, Mosepele K, Chimbari M (2011) The tropical African mercury anomaly: lower than expected mercury concentrations in fish and human hair. Sci Total Environ 409:1967–1975CrossRefGoogle Scholar
  9. Bloom N (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017CrossRefGoogle Scholar
  10. Bravo AG, Loizeau JL, Bouchet S, Richard A, Rubin J, Ungureanu V-G, Amouroux D, Dominik J (2010) Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania). Environ Sci Pollut Res 17:1422–1432CrossRefGoogle Scholar
  11. Bose-O’Reilly S, Drasch G, Beinhoff C, Tesha A, Drasch K, Roider G et al (2010) Health assessment of artisanal gold miners in Tanzania. Sci Total Environ 408:796–805CrossRefGoogle Scholar
  12. Belzile N, Chen Y-W, Gunn JM, Tong J, Alarie Y, Delonchamp T, Lang CY (2006) The effect of selenium on mercury assimilation by freshwater organisms. Can J Fish Aquat Sci 63:1–10 bCrossRefGoogle Scholar
  13. Belzile N, Chen YW, Yang DY, Truong HYT, Zhao QX (2009) Selenium bioaccumulation in freshwater organisms and antagonistic effect against mercury assimilation. Environ Bioindic 4:203–21CrossRefGoogle Scholar
  14. Burger J, Gochfeld M (2012) Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories. Environ Res 114:12–23CrossRefGoogle Scholar
  15. Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic artic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263CrossRefGoogle Scholar
  16. Campbell L, Verburg P, Dixon DG, Hecky RE (2008) Mercury biomagnification in the food web of Lake Tanganyika (Tanzania, East Africa). Sci Total Environ 402:184–191CrossRefGoogle Scholar
  17. Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23CrossRefGoogle Scholar
  18. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–62CrossRefGoogle Scholar
  19. Chen Y-W, Zhou M-D, Tong J, Belzile N (2005) Application of photochemical reactions of Se in natural waters by hydride generation atomic fluorescence spectrometry. Anal Chim Acta 545:142–148CrossRefGoogle Scholar
  20. Chen Y-W, Belzile N, Gunn JM (2001) Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters? Limnol Oceanogr 46:1814–1818CrossRefGoogle Scholar
  21. Donkor AK, Bonzongo JC, Nartey VK, Adotey DK (2006) Mercury in different environmental compartments of the Pra River basin, Ghana. Sci Total Environ 368:164–167CrossRefGoogle Scholar
  22. Dos Santos LSN, Müller RCS, Sarkis JES, Alves CN, Brabo ES, Santos EO et al (2000) Evaluation of total mercury concentrations in fish consumed in the municipality of Itaituba, Tapajós River basin, Pará, Brazil. Sci Total Environ 261:1–8CrossRefGoogle Scholar
  23. Food and Agriculture Organization (2003) Report of the Expert Consultation on International Fish Trade and Food Security. Casablanca, Morocco, FAO Fisheries Report. No. 708. 213Google Scholar
  24. Francesconi KA, Lenanton RCJ (1992) Mercury contamination in a semi-enclosed marine embayment: organic and inorganic mercury content of biota and factors influencing mercury levels in fish. Mar Environ Res 33:189–212CrossRefGoogle Scholar
  25. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19:417–428CrossRefGoogle Scholar
  26. Grandjean P, White RF, Nielsen A, Cleary D, de Oliveira Santos EC (1999) Methylmercury neurotoxicity in Amazonian children: downstream from gold mining. Environ Health Perspect 107:587–591CrossRefGoogle Scholar
  27. Grandjean P, Weihe P, White RF (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 77:165–172CrossRefGoogle Scholar
  28. Grieb TM, Driscoll CT, Gloss SP, Schofield CL, Bowie GL, Porcella DB (1990) Factors affecting mercury accumulation in fish in the upper Michigan Peninsula. Environ Toxicol Chem 9:919–930CrossRefGoogle Scholar
  29. Gochfeld M, Burger J, Jeitner C, Donio M, Pittfield T (2012) Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey. Environ Res 112:8–19CrossRefGoogle Scholar
  30. Guédron, S., D. Tisserand, S. Garambois, L. Spadini, F. Molton, B. Bounvilay, L. Charlet and D. A. Polya (2014). Baseline investigation of (methyl)mercury in waters, soils, sediments and key foodstuffs in the Lower Mekong Basin: The rapidly developing city of Vientiane (Lao PDR). Journal of Geochemical Exploration 143:96–102Google Scholar
  31. Hammerschmidt C, Wiener JG, Frazier BE, Rada RG (1999) Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconsin lakes. Environ Sci Technol 33:999–1003CrossRefGoogle Scholar
  32. Harris RC, Bodaly RA (1998) Temperature, growth and dietary effects on fish mercury dynamics in two Ontario lakes. Biogeochemistry 40:175–187CrossRefGoogle Scholar
  33. Ikingura JR, Akagi H (1996) Monitoring of fish and human exposure to mercury due to gold mining in the Lake Victoria goldfields. Tanzania Sci Total Environ 191:59–68CrossRefGoogle Scholar
  34. Ikingura J, Akagi H, Mujumba J, Messo C (2006) Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria goldfields, Tanzania. J Environ Manag 81:167–173CrossRefGoogle Scholar
  35. Johnson CL (2004) Mercury in the environment: sources, toxicities, and prevention of exposure. Pediatr Ann 33(7):437–442CrossRefGoogle Scholar
  36. Kajiwara Y, Yasutake A, Adachi T (1996) Methylmercury transport across the placenta via neutral amino acid carrier. Arch Toxicol 70:310–314CrossRefGoogle Scholar
  37. Khan M, Wang F (2009) Mercury–selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28:1567–1577CrossRefGoogle Scholar
  38. Kidd K A, Bootsma H A, Hesslein R H, Lyle Lockhart W, Hecky R E (2003) Mercury concentrations in the food web of Lake Malawi, East Africa. Journal of Great Lakes Research 29 Supplement 2:258–266Google Scholar
  39. Kidd KA, Stern G, Lemoalle J (2004) Mercury and other contaminants in fish from Lake Chad. Africa: Bull Environ Contam Toxicol 73:249–256Google Scholar
  40. Kwaansa-Ansah EE, Agorku SE, Nriagu JO (2011) Levels of total mercury in different fish species and sediments from the upper Volta basin at Yeji in Ghana. Bull Environ Contam Toxicol 86:406–409CrossRefGoogle Scholar
  41. Lawrence DM, Treloar PJ, Rankin AH, Harbidge P, Holliday J (2013) The geology and mineralogy of the Loulo mining district, West Africa: evidence for two distinct styles of orogenic gold mineralization. Econ Geol 108:199–227CrossRefGoogle Scholar
  42. Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F, Dolbec J (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian basin. Environ Res Environ Res 79:20–32CrossRefGoogle Scholar
  43. Mason RP, Laporte JM, Andres S (2000) Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38:283–297CrossRefGoogle Scholar
  44. Matsubara J, Machida K (1985) Significance of elemental analysis of hair as a means of detecting environmental pollution. Environ Res 38:225–238CrossRefGoogle Scholar
  45. McDowell, M.A.,C.F. Dillon, J. Osterloh, P. M. Bolger, E. Pellizzari, R. Fernando, R. M. de Oca, S.E. Schober, T. Sinks, R.L. Jones and K. R. Mahaffey (2004). Hair Mercury Levels in U.S. Children Women of Childbearing Age: Reference Range Data from NHANES 1999–2000. EnvironmentalHealth Perspectives 112:1165–1171Google Scholar
  46. Mezghani-Chaari S, Hamza A, Hamza-Chaffai A (2011) Mercury contamination in human hair and some marine species from Sfax coasts of Tunisia: levels and risk assessment. Environ Monit Assess 180:477–487CrossRefGoogle Scholar
  47. Mortada WI, Sobh MA, El-Defrawy MM, Farahat SE (2002) Reference intervals of cadmium, lead and mercury in blood, urine, hair and nails among residents in Mansoura City, Nile Delta, Egypt. Environ Res 90:104–110CrossRefGoogle Scholar
  48. Murata K, Weihe P, Budtz-Jorgensen E (2004) Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury. J Pediatr 144:177–183CrossRefGoogle Scholar
  49. Niane B, Moritz R, Guédron S, Ngom PM, Pfeifer HR, Mall I, Poté J (2014) Effect of recent artisanal small-scale gold mining on the contamination of surface river sediment: case of Gambia River, Kedougou region, southeastern Senegal. J Geochem Explor 144:517–527CrossRefGoogle Scholar
  50. Olivero J, Johnson B, Arguello E (2002) Human exposure to mercury in San Jorje River basin, Columbia (South America). Sci Total Environ 289:41–47CrossRefGoogle Scholar
  51. Orihel DM, Paterson MJ, Blanchfield PJ, Bodaly RA, Hintelmann H (2007) Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environ Sci Technol 41:4952–4958CrossRefGoogle Scholar
  52. Ouédraogo O, Amyot M (2013) Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci Total Environ 444:243–254CrossRefGoogle Scholar
  53. Programme d’Appui au Secteur Minier PASMI (2009) Cartographie géologique du Sénégal au 1/500000. Rapport final. Projet 9 ACP SE 009Google Scholar
  54. Peterson SA, Ralston NVC, Whanger PD, Oldfield JE, Mosher WD (2009) Selenium and mercury interactions with emphasis on fish tissue. Environ Bioindicat 4:318–334CrossRefGoogle Scholar
  55. Ralston CR, Blackwell JL III, Ralston NVC (2006) Effects of dietary selenium and mercury on house crickets (Acheta domesticus L.): implications of environmental co-exposures. Environ Bioindic 1:98–109CrossRefGoogle Scholar
  56. Ralston NVC, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278:112–123CrossRefGoogle Scholar
  57. Rashed MN (2001) Monitoring of environmental heavy metals in fish from Nasser Lake. Environ Int 27:27–33CrossRefGoogle Scholar
  58. Sakamoto M, Kubota M, Matsumoto S, Nakano A, Akagi H (2002) Declining risk of methylmercury exposure to infants during lactation. Environ Res 90:185–189CrossRefGoogle Scholar
  59. Sivaperumal P, Sankar TV, Viswanathan-Nair PG (2007) Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chem 102:612–620CrossRefGoogle Scholar
  60. Sylla M, Ngom PM (1997) Le gisement d’or de Sabodala (Sénégal Oriental): une minéralisation filonienne d’origine hydrothermale remobilisée par une tectonique cisaillante. J Afr Earth Sci 25:183–192CrossRefGoogle Scholar
  61. Sørmo EG, Ciesielski TM, Øverjordet IB, Lierhagen S, Eggen GS, Berg T et al (2011) Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol 45:6561–6566CrossRefGoogle Scholar
  62. UNEP/WHO (2008) Guidance for identifying population at risk from mercury exposure UNEP/WHO, Geneva, SwitzerlandGoogle Scholar
  63. United States Environmental Protection Agency (1997) Mercury Study Report to Congress Volume IV: An Assessment of Exposure to Mercury in the United States. 293 p. http://www.epa.gov/ttn/oarpg/t3/reports/volume4.pdf
  64. Voegborlo RB, Matsuyama A, Adimado AA, Akagi H (2010) Head hair total mercury and methylmercury levels in some Ghanaian individuals for the estimation of their exposure to mercury: preliminary studies. Bull Environ Contam Toxicol 84:34–8CrossRefGoogle Scholar
  65. World Health Organization (2004) Sixty-first Report of the Joint FAO/WHO Expert Committee on Food Additive (JEFCA)Google Scholar
  66. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–60CrossRefGoogle Scholar
  67. Xue F, Holzman C, Rahbar MH, Trosko K, Fischer L (2007) Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect 115:42–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Birane Niane
    • 1
    Email author
  • Stéphane Guédron
    • 2
  • Robert Moritz
    • 1
  • Claudia Cosio
    • 1
  • Papa Malick Ngom
    • 3
  • Naresh Deverajan
    • 1
  • Hans Rudolf Pfeifer
    • 4
  • John Poté
    • 1
  1. 1.Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Institut des Sciences de la TerreUniversité Grenoble 1GrenobleFrance
  3. 3.Département de GéologieUniversité Cheikh Anta DIOPDakarSenegal
  4. 4.Institut des Dynamiques de la Surface TerrestreUniversité de LausanneLausanneSwitzerland

Personalised recommendations