Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 9, pp 6920–6931 | Cite as

Environmental risk of combined emerging pollutants in terrestrial environments: chlorophyll a fluorescence analysis

  • Víctor González-Naranjo
  • Karina Boltes
  • Irene de Bustamante
  • Pino Palacios-Diaz
Research Article

Abstract

The risk assessment in terrestrial environments has been scarcely studied for mixtures of organic contaminants. To estimate toxicity due to these compounds, an ecotoxicological test may be done with the appropriate organism and biomarker. Photosynthesis is principally performed at photosystem II, and its efficiency is affected by any environmental stress. Consequently, the measure of this efficiency may be a good indicator of toxicity if different parameters are employed, e.g., the quantum efficiency of photosystem II and the photochemical quenching coefficient. We did a series of assays to determine the toxicity of two organic contaminants, ibuprofen and perfluorooctanoic acid, using a higher plant (Sorghum bicolor). The results showed more toxicity for the perfluorinated compound and greater sensibility for the quantum efficiency of photosystem II. Regarding the binary combination, three methods were applied to calculate EC50: combination index, concentration addition, and independent action. Synergistic behavior is the principal toxicological profile for this mix. Therefore, the combination index, which considers interactions among chemicals, gave the best estimation to determine risk indices. We conclude that the inhibition of photosynthesis efficiency can be a useful tool to determine the toxicity of the mixtures of organic pollutants and to estimate ecological risks in terrestrial environments.

Keywords

Combination index Hazard quotient Organic compounds Photosynthesis Phytotoxicity Quantum efficiency of PSII 

Notes

Acknowledgments

This research was funded by the next research projects: CSD2006-00044, MICINN-CGL2009-13168-C03-01, CGL2012-39520-C03-01, and P2009/AMB-1588.

Supplementary material

11356_2014_3899_MOESM1_ESM.doc (311 kb)
ESM 1 (DOC 311 kb)

References

  1. Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38:6353–6362CrossRefGoogle Scholar
  2. Arrhenius A, Grönvall F, Scholze M, Backhaus T, Blanck H (2004) Predictability of the mixture of 12 similarly acting congeneric inhibitors of photosystem II in marine periphyton and epipsammon communities. Aquat Toxicol 68:351–367CrossRefGoogle Scholar
  3. Aznar R, Sánchez-Brunete C, Albero B, Rodríguez JA, Tadea JL (2013) Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields. Environ Sci Pollut Res. doi: 10.1007/s11356-013-2438-7 Google Scholar
  4. Bi YF, Miao SS, Lu YC, Qiu CB, Zhou Y, Yang H (2012) Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J Hazard Mater 243:242–249CrossRefGoogle Scholar
  5. Buonasera K, Lambreva M, Rea G, Touloupakis E, Giardi MT (2011) Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal Bioanal Chem 401:1139–1151CrossRefGoogle Scholar
  6. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Figueroa-Luque E, Luque T, Figueroa ME (2013) Evaluation of zinc tolerance and accumulation potential of the coastal shrub Limoniastrum monopetalum (L.) Boiss. Environ Exp Bot 85:50–57CrossRefGoogle Scholar
  7. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681CrossRefGoogle Scholar
  8. Chou TC, Martin N (2005) CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantification of synergism and antagonism in drug combinations and the determination of IC50 and ED50 and LD50 values. ComboSyn, Inc., ParamusGoogle Scholar
  9. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRefGoogle Scholar
  10. Dordio A, Ferro R, Teixera D, Palace AJ, Pinto AP, Dias CMB (2011) Study on the use of Typha spp. for the phytotreatment of water contaminated with ibuprofen. Int J Environ Anal Chem 91:654–667CrossRefGoogle Scholar
  11. Duan Y, Dai C, Zhang Y, Chen L (2013) Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Anal Chim Acta 758:93–100CrossRefGoogle Scholar
  12. EMEA (2006) European Chemical Agency. Guideline on the environmental risk assessment of medicinal products for human use, doc ref. EMEA/CHMP/SWP/4447/00Google Scholar
  13. Faraloni C, Cutino I, Petruccelli R, Leva AR, Lazzeri S, Torzillo G (2011) Chlorophyll fluorescence techniques as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ Exp Bot 73:49–56CrossRefGoogle Scholar
  14. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56:13–32CrossRefGoogle Scholar
  15. Furtula V, Stephenson GL, Olaveson KM, Chambers PA (2012) Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa. Arch Environ Contam Toxicol 63:513–522CrossRefGoogle Scholar
  16. González-Naranjo V, Boltes K (2013) Toxicity of ibuprofen and perfluorooctanoic acid for risk assessment of mixtures in aquatic and terrestrial environments. Int J Environ Sci Technol. doi: 10.1007/s13762-013-0379-9 Google Scholar
  17. González-Naranjo V, Boltes K, Biel M (2013) Mobility of ibuprofen, a persistent active drug, in soils irrigated with reclaimed water. Plant Soil Environ 59:68–73Google Scholar
  18. González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47:2050–2064CrossRefGoogle Scholar
  19. Gottschall N, Topp E, Metcalfe C, Edwards M, Payne M, Kleywegt S, Russel P, Lapen DR (2012) Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere 87:194–203CrossRefGoogle Scholar
  20. Grung M, Källqvist T, Sakshaug S, Skurtveit S, Thomas KV (2008) Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline. Ecotoxicol Environ Saf 71:328–340CrossRefGoogle Scholar
  21. Higgins CP, Luthy RG (2006) Sorption of perfluorinated surfactants on sediment. Environ Sci Technol 40:7251–7256CrossRefGoogle Scholar
  22. Hussain MI, Reigosa MJ (2011) A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiol Biochem 49:1290–1298CrossRefGoogle Scholar
  23. Ibáñez H, Ballester A, Muñoz R, Quiles MJ (2010) Chlororespiration and tolerance to drought, heat and high illumination. J Plant Physiol 167:732–738CrossRefGoogle Scholar
  24. Iori V, Zacchini M, Pietrini F (2013) Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture. J Hazard Mater 262:796–804CrossRefGoogle Scholar
  25. Iriel A, Novo JM, Cordon GB, Lagorio MG (2014) Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited—implications in photosystems emission and ecotoxicity assessment. Photochem Photobiol 90:107–112CrossRefGoogle Scholar
  26. Karnjanapiboonwong A, Suski J, Shah A, Cai Q, Morse A, Anderson T (2011) Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut 216:257–273CrossRefGoogle Scholar
  27. Katayama A, Bhula R, Burns GR, Carazo E, Felsot A, Hamilton D, Harris C, Kim YH, Kleter G, Koerdel W, Linders J, Peijnenburg JGMW, Sabljic A, Stephenson RG, Racke DK, Rubin B, Tanaka K, Unsworth J, Wauchope RD (2010) Bioavailability of xenobiotics in the soil environment. Rev Environ Contam Toxicol 203:1–86Google Scholar
  28. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  29. Kumar KS, Han T (2011) Toxicity of single and combined herbicides on PSII maximum efficiency of an aquatic higher plant, Lemna sp. Toxicol Environ Heal Sci 3:97–105CrossRefGoogle Scholar
  30. Laviale M, Morin S, Créach A (2011) Short term recovery of periphyton photosynthesis after pulse exposition to the photosystem II inhibitors atrazine and isoproturon. Chemosphere 84:731–734CrossRefGoogle Scholar
  31. Li F, Zhang C, Qu Y, Chen J, Chen L, Liu Y, Zhou Q (2010) Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Sci Total Environ 408:617–623CrossRefGoogle Scholar
  32. Liu W, Chen S, Quan X, Jin YH (2008) Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ Toxicol Chem 27:1597–1604CrossRefGoogle Scholar
  33. Magnusson M, Heimann K, Quayle P, Negri A (2010) Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar Pollut Bull 60:1978–1987CrossRefGoogle Scholar
  34. Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 239–240:40–47CrossRefGoogle Scholar
  35. Martínez-Bueno MJ, Gómez MJ, Herrera S, Hernando MD, Agüera A, Fernández-Alba AR (2012) Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: two years pilot survey monitoring. Environ Pollut 164:267–273CrossRefGoogle Scholar
  36. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  37. Meng J, Wang TY, Wang P, Giesy JP, Lu YL (2013) Perfluorinated compounds and organochlorine pesticides in soils around Huaihe River: a heavily contaminated waatershed in Central China. Environ Sci Pollut Res 20:3965–3974CrossRefGoogle Scholar
  38. Millaleo R, Reyes-Díaz M, Alberdi M, Ivanov AG, Krol M, Hüner NPA (2012) Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot 64(1):343–354. doi: 10.1093/jxb/ers339, Advance access publication 26 November 2012CrossRefGoogle Scholar
  39. Naumann JC, Anderson JE, Young DR (2010) Remote detection of plant physiological responses to TNT soil contamination. Plant Soil 329:239–248CrossRefGoogle Scholar
  40. OECD (2003) Guidelines for the testing of chemicals. Proposal for updating guideline 208. Terrestrial plant test: 208. Seedling emergence and seedling growth test; 2003. Draft documentGoogle Scholar
  41. OECD (2008) Guidelines for the testing of chemicals, no. 23: guidance document on aquatic toxicity testing of difficult substances and mixtures, PDF edition (ISSN 1607-310X), 2008, 18th addendumGoogle Scholar
  42. Othman HB, Leboulanger C, Le Floc’h E, Mabrouk HH, Hlaili AS (2012) Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: does cell size really matter? J Hazard Mater 243:204–211CrossRefGoogle Scholar
  43. Oukarroum A, Perreault F, Popovic R (2012) Interactive effects of temperature and copper on photosystem II photochemistry in Chlorella vulgaris. J Photochem Photobiol B 110:9–14CrossRefGoogle Scholar
  44. Perkola N, Sainio P (2013) Survey of perfluorinated alkyl acids in Finnish effluents, storm water, landfill leachate and sludge. Environ Sci Pollut Res 20:7979–7987CrossRefGoogle Scholar
  45. Pico Y, Blasco C, Farré M, Barceló D (2012) Occurrence of perfluorinated compounds in water and sediment of L’Albufera Natural Park (València, Spain). Environ Sci Pollut Res 19:946–957CrossRefGoogle Scholar
  46. Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90:1274–1280CrossRefGoogle Scholar
  47. Ralph PJ, Smith RA, Macinnis-Ng CMO, Seery CR (2007) Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: review. Toxicol Environ Chem 89:589–607CrossRefGoogle Scholar
  48. Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307CrossRefGoogle Scholar
  49. Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater 185:862–869CrossRefGoogle Scholar
  50. Regulation EC No. 1272/2008 on classification, labelling and packaging of substances and mixtures, category I, EC50<1Google Scholar
  51. Riddell J, Padget PE, Nash TH (2012) Physiological responses of lichens to factorial fumigations with nitric acid and ozone. Environ Pollut 170:202–210CrossRefGoogle Scholar
  52. Rodea-Palomares I, Petre AL, Boltes K, Leganés F, Perdigón-Melón JA, Rosal R, Fernández-Piñas F (2010) Application of the combination index (CI)–isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res 44:427–438CrossRefGoogle Scholar
  53. Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Petre A (2010) Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 81:288–293CrossRefGoogle Scholar
  54. Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395CrossRefGoogle Scholar
  55. Schnell S, Bols NC, Barata C, Porte C (2009) Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1. Aquat Toxicol 93:244–252CrossRefGoogle Scholar
  56. Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyrum cristatum leaves under water stress. Plant Sci 178:130–139CrossRefGoogle Scholar
  57. Skutlarek D, Exner M, Färber H (2006) Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut Res 13:299–307CrossRefGoogle Scholar
  58. Stahl T, Heyn J, Thiele H, Hüther J, Failing K, Georgii S, Brunn H (2009) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant. Arch Environ Contam Toxicol 57:289–298CrossRefGoogle Scholar
  59. Stasinakis AS, Memigka S, Samaras VG, Farmaki E, Thomaidis NS (2012) Occurrence of endocrine disrupters and selected pharmaceuticals in Aisonas River (Greece) and environmental risk assessment using hazard indexes. Environ Sci Pollut Res 19:1574–1583CrossRefGoogle Scholar
  60. Strasser RJ (1978) The grouping model of plant photosynthesis. In: Akoyunoglou G (ed) Chloroplast development. Elsevier, North Holland, pp 513–524Google Scholar
  61. Thakkar M, Randhawa V, Wei L (2013) Comparative responses of two species of marine phytoplankton to metolachlor exposure. Aquat Toxicol 126:198–206CrossRefGoogle Scholar
  62. USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. US Environmental Protection Agency, Washington, DC EPA-812-R02-012Google Scholar
  63. Vantová I, Bačkor M, Klejdus B, Bačkorová M, Kováčik J (2013) Copper uptake and copper-induced physiological changes in the epiphytic lichen Evernia prunastri. Plant Growth Regul 69:1–9CrossRefGoogle Scholar
  64. Vázquez-Roig P, Andreu V, Onghena M, Blasco C, Picó Y (2011) Assessment of the occurrence and distribution of pharmaceuticals in a Mediterranean wetland (L’Albufera, Valencia, Spain) by LC-MS/MS. Anal Bioanal Chem 40:1287–1301CrossRefGoogle Scholar
  65. Von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kühne R, Ebert RU, Ginebreda A, De Cooman W, Schürmann G, Brack W (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ 409:2064–2077CrossRefGoogle Scholar
  66. Wen B, Li L, Liu Y, Zhang H, Hu X, Shan X-q, Zhan, S (2013) Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. cv. TY2). Plant Soil 370:345–354Google Scholar
  67. Wu X, Zhu Z, Li X, Zha D (2012) Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol Plant 34:2105–2114CrossRefGoogle Scholar
  68. Xu QS, Hu JZ, Xie KB, Yang HY, Du KH, Shi GX (2010) Accumulation and acute toxicity of silver in Potamogeton crispus L. J Hazard Mater 173:186–193CrossRefGoogle Scholar
  69. Xu Q, Min H, Cai S, Fu Y, Sha S, Xie K, Du K (2012) Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere 89:114–120CrossRefGoogle Scholar
  70. Xu D, Li C, Chen H, Shao B (2013) Cellular response of freshwater green algae to perfluorooctanoic acid toxicity. Ecotoxicol Environ Saf 88:103–107CrossRefGoogle Scholar
  71. Zarco-Tejada PJ, Berni JAJ, Súarez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113:1262–1275CrossRefGoogle Scholar
  72. Zezulka S, Kummerová M, Babula P, Váňová L (2013) Lemna minor exposed to fluoranthene: Growth, biochemical, physiological and histochemical changes. Aquat Toxicol 140–141:37–47Google Scholar
  73. Zhao H, Chen C, Zhang X, Chen J, Quan X (2011) Phytotoxicity of PFOS and PFOA to Brassica chinensis in different Chinese soils. Ecotoxicol Environ Saf 74:1343–1347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Víctor González-Naranjo
    • 1
    • 2
  • Karina Boltes
    • 1
    • 2
  • Irene de Bustamante
    • 2
    • 3
  • Pino Palacios-Diaz
    • 4
  1. 1.Department of Chemical EngineeringUniversity of AlcaláAlcalá de HenaresSpain
  2. 2.Advanced Study Institute of MadridIMDEA-AguaAlcalá de HenaresSpain
  3. 3.Department of GeologyUniversity of AlcaláAlcalá de HenaresSpain
  4. 4.Department of Animal Pathology, Animal Production, Food Science and Food TechnologyUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations