Environmental Science and Pollution Research

, Volume 22, Issue 21, pp 16405–16416 | Cite as

Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies

  • Paul Thellmann
  • Heinz-R. Köhler
  • Annette Rößler
  • Marco Scheurer
  • Simon Schwarz
  • Hans-Joachim Vogel
  • Rita Triebskorn
Danio rerio as a Model in Aquatic Toxicology and Sediment Research

Abstract

In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.

Keywords

Sediment Toxicity Fish embryo test Wastewater Powdered activated carbon 

Notes

Acknowledgments

The study is part of the SchussenAktivplus project funded by the German Federal Ministry for Education and Research (BMBF) and co-funded by the Ministry of the Environment, Climate Protection and the Energy Sector, Baden-Württemberg. SchussenAktivplus is connected to the BMBF action plan “Sustainable water management (NaWaM)” and is integrated into the BMBF framework programme “Research for sustainable development FONA”. It is part of the funding measure, “Risk Management of Emerging Compounds and Pathogens in the Water Cycle (RiSKWa)” (contract period: January 2012 to June 2015; funding number: 02WRS1281A). The studies at the WWTPs Albstadt-Ebingen and Albstadt-Lautlingen were funded by the Ministry of the Environment, Climate Protection and the Energy Sector, Baden-Württemberg, and Albstadt town. Particular thanks go to Katharina Greiner-Perth, Stefanie Jacob, Heinz Krause, Steffen Metzger, Raphaela Osterauer, Doreen Richter, and Karl Wurm and all colleagues who were involved in the sampling campaigns and analytics.

References

  1. Abegglen C (2010) Mikroverunreinigungen in Kläranlagen - Technische Verfahren zur Elimination von organischen Spurenstoffen. Gas, Wasser und AbwasserGoogle Scholar
  2. Bartzke M, Delov V, Stahlschmidt-Allner P, Allner B, Oehlmann J (2010) Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach. J Soils Sediments 10:389–399CrossRefGoogle Scholar
  3. Boehler M, Zwickenpflug B, Hollender J, Ternes T, Joss A, Siegrist H (2012) Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Sci Technol 66:2115–2121CrossRefGoogle Scholar
  4. Brinkmann M, Hudjetz S, Keiter S, Seiler TB, Wölz J, Hallare AV, Hollert H, Cofalla C, Roger S, Schüttrumpf H, Gerbersdorf SU (2010) Toxicity and risk assessment of fluvial sediments and suspended matter: a short overview of past and recent developments in sediment toxicity assessment. Umweltwissenschaften Schadstoff-Forsch 22:651–655CrossRefGoogle Scholar
  5. Burke V, Greskowiak J, Asmuß T, Bremermann R, Taute T, Massmann G (2014) Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone. Sci Total Environ 482–483:53–61CrossRefGoogle Scholar
  6. da Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85:1331–1339CrossRefGoogle Scholar
  7. Förstner U, Heise S, Schwartz R, Westrich B, Ahlf W (2004) Historical contaminated sediments and soils at the river basin scale—examples from the Elbe River catchment area. J Soils Sediments 4:247–260CrossRefGoogle Scholar
  8. Gerbersdorf SU, Westrich B, Paterson DM (2009) Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microb Ecol 58:334–349CrossRefGoogle Scholar
  9. Gerbersdorf S, Hollert H, Brinkmann M, Wieprecht S, Schüttrumpf H, Manz W (2011) Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a triad plus x approach. J Soils Sediments 11:1099–1114CrossRefGoogle Scholar
  10. Hollert H, Dürr M, Erdinger L, Braunbeck T (2000) Cytotoxicity of settling particulate matter (SPM) and sediments of the Neckar River (Germany) during a winter flood. Environ Toxicol Chem 19:528–534CrossRefGoogle Scholar
  11. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207CrossRefGoogle Scholar
  12. Hollert H, Ernst M, Ahlf W, Dürr M, Erdinger L, Grund S, Keiter S, Kosmehl T, Seiler TB, Wölz J, Braunbeck T (2009) Strategien zur Sedimentbewertung – ein Überblick. Umweltwissenschaften Schadstoff-Forsch 21:60–176, GermanGoogle Scholar
  13. Keiter S, Rastall A, Kosmehl T, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube river. A pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res 13:308–319CrossRefGoogle Scholar
  14. Keiter S, Peddinghaus S, Feiler U, von der Goltz B, Hafner C, Ho NY, Rastegar S, Otte JC, Ottermanns R, Reifferscheid G, Strähle U, Braunbeck T, Hammers-Wirtz M, Hollert H (2010) DanTox—a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. J Soils Sediments 10(4):714–717CrossRefGoogle Scholar
  15. Kunkel U, Radke M (2012) Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 46(17):5551–5565CrossRefGoogle Scholar
  16. Lahti M, Oikari A (2011) Microbial transformation of pharmaceuticals naproxen, bisoprolol, and diclofenac in aerobic and anaerobic environments. Arch Environ Contam Toxicol 61(2):202–210CrossRefGoogle Scholar
  17. Löffler D, Rombke J, Meller M, Ternes T (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39(14):5209–5218CrossRefGoogle Scholar
  18. LUBW (2008) Bewirtschaftungsziele für Fließgewässer. Arbeitshilfe zur Erstellung der Maßnahmenprogramme im Rahmen des ersten Bewirtschaftungsplans zur Umsetzung der Wasserrahmenrichtlinie. Juni 2008 (German)Google Scholar
  19. Luo Y, Gu W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Xiaochang CW (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641CrossRefGoogle Scholar
  20. Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schaerer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon. Sci Total Environ 461–462:480–498CrossRefGoogle Scholar
  21. Nowotny N, Epp B, von Sonntag C, Fahlenkamp H (2007) Quantification and modeling of the elimination behavior of ecologically problematic wastewater micropollutants by adsorption on powdered and granulated activated carbon. Environ Sci Technol 41(6):2050–2055CrossRefGoogle Scholar
  22. OECD (2013) Guideline for testing of chemicals, 236. Fish embryo acute toxicity (FET) test. OECD, Paris, France. Available at: http://www.oecd.org
  23. Oetken M, Stachel B, Pfenninger M, Oehlmann J (2005) Impact of a flood disaster on sediment toxicity in a major river system—the Elbe flood 2002 as a case study. Environ Pollut 134(1):87–95CrossRefGoogle Scholar
  24. OGewV (2011) Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung - OGewV). http://www.gesetze-im-internet.de/bundesrecht/ogewv/gesamt.pdf (German)
  25. Osterauer R, Köhler HR (2008) Temperature-dependent effects of the pesticides thiacloprid and diazinon on the embryonic development of zebrafish (Danio rerio). Aquat Toxicol 86(4):485–494CrossRefGoogle Scholar
  26. Power EA, Chapman PM (1992) Assessing sediment quality. In: Burton GA (ed) Sediment toxicity assessment. Lewis-Publishers, Boca Raton, pp 1–18Google Scholar
  27. Reungoat J, Macova M, Escher BI, Carswell S, Mueller JF, Keller J (2010) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44:625–637CrossRefGoogle Scholar
  28. Rocha PS, Bernecker C, Strecker R, Fiorillo Mariani C, Martins Pompêo ML, Storch V, Hollert H, Braunbeck T (2011) Sediment-contact fish embryo toxicity assay with Danio rerio to assess particle-bound pollutants in the Tietê River Basin (São Paulo, Brazil). Ecotoxicol Environ Saf 74:1951–1959CrossRefGoogle Scholar
  29. Steinmetz H, Dittmer U (2010) Regenwasserbehandlung gestern, heute - und morgen? Stuttgarter Berichte zur Siedlungswasserwirtschaft 204:7–14 (German)Google Scholar
  30. Ternes T, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Glude B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863CrossRefGoogle Scholar
  31. Triebskorn R, Hetzenauer (2012) Micropollutants in three tributaries of Lake Constance, Argen, Schussen and Seefelder Aach: a literature review. (Mikroverunreinigungen in den drei Bodenseezufluessen Argen, Schussen und Seefelder Aach - eine Literaturstudie). Environ Sci Eur 24:8CrossRefGoogle Scholar
  32. Triebskorn R, Casper H, Scheil V, Schwaiger J (2007) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal Bioanal Chem 387(4):1405–1416CrossRefGoogle Scholar
  33. Triebskorn R, Amler K, Blaha L, Gallert C, Giebner S, Gude H, Henneberg A, Hess S, Hetzenauer H, Jedele K, Jung R-M, Kneipp S, Köhler HR, Krais S, Kuch B, Lange C, Loffler H, Maier D, Metzger J, Muller M, Oehlmann J, Osterauer R, Peschke K, Raizner J, Rey P, Rault M, Richter D, Sacher F, Scheurer M, Schneider-Rapp J, Seifan M, Spieth M, Vogel H-J, Weyhmuller M, Winter J, Wurm K (2013a) SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany. Environ Sci Eur 25:2CrossRefGoogle Scholar
  34. Triebskorn R, Blaha L, Engesser B, Güde H, Hetzenauer H, Henneberg A, Köhler H-R, Krais S, Maier D, Peschke K, Thellmann P, Vogel H-J, Kuch B, Oehlmann J, Rault M, Suchail S, Rey P, Richter D, Sacher F, Weyhmüller M, Wurm K (2013b) SchussenAktiv – Eine Modellstudie zur Effizienz der Reduktion der Gehalte an anthropogenen Spurenstoffen durch Aktivkohle in Kläranlagen. Korrespondenz Wasserwirtsch 8:427–437, GermanGoogle Scholar
  35. Triebskorn R, Thellmann P, Vogel H-J, Wurm K (2014) Die Kläranlage Albstadt-Ebingen: Aktivkohlefilterung im Vollstrom seit 1992 - Ein langfristiger Erfolg für die Fischgesundheit und die Gewässerökologie? Korrespondenz Wasserwirtschaft, 7. Jahrgang 10:587–593 (German)Google Scholar
  36. Vincze K, Graf K, Scheil V, Köhler HR, Triebskorn R (2014) Embryotoxic and proteotoxic effects of water and sediment from the Neckar River (Southern Germany) to zebrafish (Danio rerio) embryos. Environ Sci Eur 26:3CrossRefGoogle Scholar
  37. Vogel H-J, Baur S, Triebskorn R, Rößler A, Metzger S (2014) Die Kläranlage Albstadt-Ebingen: 20 Jahre Pulveraktivkohleeinsatz im Vollstrom. Abwassertechnische Besonderheiten und Effizienz für die Elimination von Spurenstoffen. KA Korrespondenz Abwasser, Abfall; 61. Jahrgang (German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paul Thellmann
    • 1
    • 6
  • Heinz-R. Köhler
    • 1
  • Annette Rößler
    • 2
  • Marco Scheurer
    • 3
  • Simon Schwarz
    • 1
  • Hans-Joachim Vogel
    • 4
  • Rita Triebskorn
    • 1
    • 5
  1. 1.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  2. 2.Competence Centre for Trace Substances Baden-Württemberg (KomS), c/o University of StuttgartStuttgartGermany
  3. 3.Water Technology Centre Karlsruhe (TZW)KarlsruheGermany
  4. 4.Regional Commission (RP) TübingenTübingenGermany
  5. 5.Steinbeis Transfer-Center for Ecotoxicology and EcophysiologyRottenburgGermany
  6. 6.Animal Physiological Ecology, Institute for Evolution and EcologyUniversity of TübingenTübingenGermany

Personalised recommendations