Environmental Science and Pollution Research

, Volume 22, Issue 8, pp 5961–5974 | Cite as

Potentially toxic element phytoavailability assessment in Technosols from former smelting and mining areas

  • Bashar QasimEmail author
  • Mikael Motelica-Heino
  • Emmanuel Joussein
  • Marilyne Soubrand
  • Arnaud Gauthier
Research Article


This study reports the chemical bioavailability of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated Technosols from two former smelting and mining areas. Though these elements have long been recognized as potentially harmful elements, understanding of their toxicity and environmental behavior in Technosols developed on former mining and smelting sites are more limited, particularly for As and Sb. Surface soils were sampled from metallophyte grassland contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (North France) and from a former mining settling basin contaminated with As, Pb, and Sb located at la Petite Faye (Limoges, France). Various selective single extraction procedures (CaCl2, NaNO3, NH4NO3, DTPA, and EDTA) were used together with germination tests with dwarf beans whose shoots were analyzed for their potentially toxic element concentrations after 21 days of growth. The extraction capacity of the potentially toxic elements followed the order EDTA > DTPA > NH4NO3 > CaCl2 > NaNO3 for both studied areas. Pearson’s correlation coefficient analysis between the concentrations of potentially toxic elements accumulated in bean primary leaves or their mineral mass with their extractable concentrations showed a positive significant correlation with dilute CaCl2 and nitrate solutions extraction procedures. In contrast, for all studied elements, except Pb, the complexing and chelating extractants (EDTA and DTPA) exhibited poor correlation with the dwarf bean leaves concentrations. Moreover, results showed that the 0.01 M CaCl2 extraction procedure was the most suitable and provided the most useful indications of metal phytoavailability for studied elements.


Potentially toxic element Partial extraction Bioavailability Mining and smelting activities Technosol 



Electrical conductivity


La Petite Faye




No growth


No significant correlation


Total organic carbon



The authors wish to acknowledge the Ministry of Higher Education and Scientific Research (Baghdad, Iraq), Dr. Domenico Morabito (Université d’Orléans) for microwave digestion, and Dr. Cécile Grosbois (Université de Tours) for granulometric analysis.


  1. Abollino O, Aceto M, Malandrino M, Mentasti E, Sarzanini C, Barberis R (2002) Distribution and mobility of metals in contaminated sites. Chemometric investigation of pollutant profiles. Environ Pollut 119:177–193CrossRefGoogle Scholar
  2. Anjos C, Magalhaes MCF, Abreu MM (2012) Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Bracal abandoned lead mine area. Portugal J Geochem Explor 113:45–55CrossRefGoogle Scholar
  3. Baxter JC, Aguilar M, Brown KM (1983) Heavy metals and persistent organics at a sewage sludge disposal site. J Environ Qual 12:311–316CrossRefGoogle Scholar
  4. Black A, McLaren RG, Reichman SM, Speir TW, Condron LM (2011) Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in arrange of agricultural soils treated with biosolids and metal salts. Environ Pollut 159:1523–1535 CrossRefGoogle Scholar
  5. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean up the environment. In: Raskin I, Ensley BD (eds) John Wiley & Sons, Inc, Toronto, pp 303Google Scholar
  6. Brooks RR (1983) Biological Methods of Prospecting for Minerals. John Wiley & Sons, New York, p 322Google Scholar
  7. Brown GE, Calas G (2011) Environmental mineralogy—understanding element behavior in ecosystems. Compt Rendus Geosci 343:90–112CrossRefGoogle Scholar
  8. Cajuste LJ, Cruz-Diaz J, Garcia-Osorio C (2000) Extraction of heavy metals from contaminated soils: I. Sequential extraction in surface soils and their relationships to DTPA extractable metals and metal plant uptake. J Environ Sci Health A 35:1141–1152CrossRefGoogle Scholar
  9. Carbonell-Barrachina AA, Burló F, Burgos-Hernández A, López E, Mataix J (1997) The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic-Amsterdam 71:167–176CrossRefGoogle Scholar
  10. Chaney RL (1975) Recommendation for management of potent1ally toxic elements in agriculture and municipal wastes. In: Factors involved in land application of agricultural and municipal Wastes. Agriculture Research Service USA. pp. 97–120Google Scholar
  11. Chojnacka K, Chojnacki A, Gorecka H, Gorecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182CrossRefGoogle Scholar
  12. Conder JM, Lanno RP, Basta NT (2001) Assessment of metal availability in smelter soils using earthworms and chemical extractions. J Environ Qual 30:1231–1237CrossRefGoogle Scholar
  13. Cornu S, Clozel B (2000) Extractions séquentielles et spéciation des éléments trace métalliques dans les sols naturels. Analyse critique. In: Etude et Gestion des sols, vol 7, 3rd ed., 179–189Google Scholar
  14. Denys S, Tack K, Caboche J, Delalain P (2008) Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Chemosphere 74:711–716CrossRefGoogle Scholar
  15. Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal. A review of physical/chemical technologies and field applications. J Hard Mater 12:1–31CrossRefGoogle Scholar
  16. Ettler V, Mihaljevic M, Sebek O, Grygar T (2007a) Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—analytical and thermodynamic approaches. Anal Chim Acta 602:131–140CrossRefGoogle Scholar
  17. Ettler V, Mihaljevic M, Sebek O, Nechutny Z (2007b) Antimony availability in highly polluted soils and sediments—a comparison of single extractions. Chemosphere 68:455–463 CrossRefGoogle Scholar
  18. Fang J, Wen B, Shan X, Lin J, Owens G (2007) Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? application of noncontaminated soils. Environ Pollut 150:209–217CrossRefGoogle Scholar
  19. Feeney S, Peterson JR, Zenz DR, Lue-Hing C (1984) National Survey of the Metals Content of Seven Vegetable Species. Dept. of Research and Development-Report No. 84-4 Metropolitan Sanitary District of Greater Chicago, Chicago, IllinoisGoogle Scholar
  20. Feng MH, Shan XQ, Zhang SZ, Wen B (2005) Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 59:939–949CrossRefGoogle Scholar
  21. Fernandez JA, Cerballeria A (2002) Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration. Chemosphere 46:535–542CrossRefGoogle Scholar
  22. Friberg L, Nordberg GR, Vouk VB (1986) Handbook on the toxicology of metals. Elsevier, New York, p 630Google Scholar
  23. Gupta SK, Aten C (1993a) Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int J Environ Anal Chem 51:25–46CrossRefGoogle Scholar
  24. Gupta SK, Aten C (1993b) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Int J Environ Anal Chem 51:25–46CrossRefGoogle Scholar
  25. Gupta AK, Sinha S (2007a) Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. J Hazard Mater 149:144–150CrossRefGoogle Scholar
  26. Gupta AK, Sinha S (2007b) Phytoextraction capacity of plants growing on tannery sludge dumping sites. Bioresour Technol 98:1788–1794  CrossRefGoogle Scholar
  27. Hattab N, Motelica-Heino M, Bourrat X, Mench M (2014) Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization. Environ Sci Pollut Res 21:10307–10319CrossRefGoogle Scholar
  28. He M (2007) Distribution and phytoavailability of antimony at an antimony mining and smelting area. Hum China Environ Geochem Health 29:209–219CrossRefGoogle Scholar
  29. He ZL, Yanga XE, Stoffellab PJ (2005) Trace elements in agroecosystems and impacts on the environment. Rev J Trace Elem Med Biol 19:125–140CrossRefGoogle Scholar
  30. Hornburg V, Welp G, Brümmer GW (1995) Behavior of heavy metals in soils. Extraction of mobile heavy metals using CaCl2 and NH4NO3. Z Pflanzenernähr Bodenkd 158:137–145CrossRefGoogle Scholar
  31. Houba VJG, Novozamsky I, Lexmond TM, Van der Lee JJ (1991) Applicability of 0.01 M CaCl2 as a single extractant for the assessment of the nutrient status of soils and other diagnostic purposes. Commun Soil Sci Plant Anal 23:2029–2051CrossRefGoogle Scholar
  32. Houba VJG, Lexmond TM, Novozamsky I, Van Der Lee JJ (1996) State of the art and future developments in soil analysis for bioavailability assessment. Sci Total Environ 178:21–28CrossRefGoogle Scholar
  33. ISO 11074 (2005) Soil Quality—Vocabulary International Organisation for Standardisation, International Organisation for StandardisationGoogle Scholar
  34. Kabata-Pendias A, Pendias H (2000) Trace Elements in Soils and Plants. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  35. Krishnamurti GSR, Smith LH, Naidu R (2000) Method for assessing plant available cadmium in soils. Aust J Soil Res 38:823–836CrossRefGoogle Scholar
  36. Kubova J, Matus P, Bujdos M, Hagarova I, Medved J (2008) Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil–plant metal transfer predictions in contaminated lands. Talanta 75:1110–1122CrossRefGoogle Scholar
  37. Lebourg A, Sterckeman T, Ciesielski H, Proix N (1996) Intérêt de différents réactifs d’extraction chimique pour l’évaluation de la biodisponibilité des métaux en traces du sol. Agronomie 16:201–215CrossRefGoogle Scholar
  38. Lebourg A, Sterckeman T, Ciesielski H, Proix N (1998a) Trace metal speciation in three unbuffered salt solutions used to assess their bioavailability in soil. J Environ Qual 27:584–590CrossRefGoogle Scholar
  39. Lebourg A, Sterckeman T, Ciesielski H, Proix N, Gomez A (1998b) Estimation of soil trace metal bioavailability using unbuffered salt solutions: degree of saturation of polluted soil extracts. Environ Technol 19:243–252CrossRefGoogle Scholar
  40. Li Z, Shuman LM (1996) Extractability of zinc, cadmium and nickel in soils amended with EDTA. J Soil Sci 161:226–232CrossRefGoogle Scholar
  41. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428  CrossRefGoogle Scholar
  42. Lin CF, Lo SS, Lin HY, Lee YC (1998) Stabilization of cadmium contaminated soils using synthesized zeolite. J Hazard Mater 60:217–226CrossRefGoogle Scholar
  43. Lintschinger J, Michalke B, Schulte-Hostede S, Schramel P (1998) Studies on speciation of antimony in soil contaminated by industrial activity. Int J Environ Anal Chem 72:11–25CrossRefGoogle Scholar
  44. Liphadzi MS, Kirkham MB (2005) Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment. S Afr J Bot 71:24–37Google Scholar
  45. Lopez-Sanchez JF, Sahuquillo A, Rauret G, Lachica M, Barahona E, Gomez A, Ure AM, Muntau H, Quevauviller Ph (2002) Extraction procedures for soil analysis. In: Quevauviller P (ed.) Methodologies for soil and sediment fractionation. The Royal Society of Chemistry, Cambridge, pp 28Google Scholar
  46. MacLean AJ (1976) Cadmium in different plant species and its availability in soils as influenced by organic matter and addition of lime, P, Cd and Zn. Can J Soil Sci 56:129–138CrossRefGoogle Scholar
  47. MacNicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129CrossRefGoogle Scholar
  48. Martínez-Sánchez MJ, Martínez-López S, García-Lorenzo ML, Martínez-Martínez LB, Pérez-Sirvent C (2011) Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma 160:535–541CrossRefGoogle Scholar
  49. McBride MB, Nibarger EA, Richards BK, Steenhuis T (2003) Trace metal accumulation by red clover grown on sewage sludge amended soils and correlation to Mehlich 3 and calcium chloride-extractable metals. Soil Sci 168:29–38CrossRefGoogle Scholar
  50. McCready S, Birch GF, Taylor SE (2003) Extraction of heavy metals in Sydney Harbour sediments using 1 M HCl and 0.05 M EDTA and implications for sediment-quality guidelines. Aust J Earth Sci 50:249–256CrossRefGoogle Scholar
  51. McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31:1661–1700CrossRefGoogle Scholar
  52. Meers E, Lamsal S, Vervaeke O, Hopgood M, Lust N, Tack FMG, Verloo MG (2005) Assessment of heavy metals bioavailability in a moderately contaminated dredged sediment disposal site and its potential for phytoextraction by Salix viminalis. Environ Pollut 137:354–364CrossRefGoogle Scholar
  53. Meers E, Du Laing G, Unamuno V, Ruttens A, Vangronsveld J, Tack FMG, Verloo GM (2007a) Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 14:247–259CrossRefGoogle Scholar
  54. Meers E, Samsonb R, Tack FMG, Ruttens A, Vandegehuchte M, Vangronsveld J, Verloo MG (2007b) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396CrossRefGoogle Scholar
  55. Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:51–61CrossRefGoogle Scholar
  56. Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable traces metals in soils. Environ Pollut 145:121–130CrossRefGoogle Scholar
  57. Miner GS, Gutierrez R, King LD (1997) Soil factors affecting plant concentrations of cadmium, copper, and zinc on sludge-amended soils. J Environ Qual 26:989–994CrossRefGoogle Scholar
  58. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193CrossRefGoogle Scholar
  59. Néel C, Bril H, Courtin-Nomade A, Dutreuil J-P (2003) Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma 111:1–20Google Scholar
  60. Negrel P, Grosbois C, Kloppmann W (2000) The labile fraction of suspended matter in the Loire River (France): multi-element chemistry and isotopic (Rb–Sr and C–O) systematics. Chem Geol 166:271–285CrossRefGoogle Scholar
  61. Norvell WA (1984) Comparison of chelating agents and soil materials. Soil Sci Soc Am J 48:1285–1292CrossRefGoogle Scholar
  62. Novozamsky I, Lexmond TM, Houba VJG (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int J Environ Anal Chem 51:47–58CrossRefGoogle Scholar
  63. Nyamangara J (1998) Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agric Ecosyst Environ 69:135–141CrossRefGoogle Scholar
  64. Pascual I, Antolin MC, Garcia C, Polo A, Sanchez-Diaz M (2004) Plant availability of heavy metals in a soil amended with a high dose of sewage sludge under drought conditions. Biol Fertil Soils 40:291–299CrossRefGoogle Scholar
  65. Plaza GA, Nalecz-Jawecki G, Pinyakong O, Illmer P, Margesin R (2010) Ecotoxicological and microbiological characterization of soils from heavy-metal and hydrocarbon-contaminated sites. Environ Monit Assess 163:477–488CrossRefGoogle Scholar
  66. Pérez-Sirvent C, Martínez-Sánchez MJ, Martínez-López S, Hernández- Córdoba M (2011) Antimony distribution in soils and plants near an abandoned mining site. Microchem J 97:52–56Google Scholar
  67. Pueyo M, López-Sánchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226CrossRefGoogle Scholar
  68. Qasim B, Motelica-Heino M (2014) Potentially toxic element fractionation in technosoils using two sequential extraction schemes. Environ Sci Pollut Res 21:5054–5065CrossRefGoogle Scholar
  69. Quevauviller P, Rauret R, Rubio G, Lopezsanchez JF, Ure AM, Bacon JR, Muntau H (1997) Certified reference materials for the quality control of EDTA- and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484). Fresenius J Anal Chem 357:611–618CrossRefGoogle Scholar
  70. Razo I, Carrizales L, Castro J, Dı'az-Barriga F, Montoroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152CrossRefGoogle Scholar
  71. Rodrıguez L, Ruiz E, Alonso-Azcarate J, Rincon J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90:1106–1116CrossRefGoogle Scholar
  72. Sahuquillo A, Rigol A, Rauret G (2003) Overview of the use of leaching/extraction test for risk assessment of the metals in contaminated soils and sediments. Trends Anal Chem 3:151–159Google Scholar
  73. Sauerbeck DR, Styperek P (1985) Evaluation of chemical methods for assessing the Cd and Zn availability from different soils and sources. In: Leschber R, Davis RD, Hernite PL (eds) Chemical methods for assessing bioavailable metals in sludge and soils. Elsevier Applied Science Publishers, London, pp 49–67Google Scholar
  74. Sauerbeck DR, Styperek P (1983) In: L’Hermite P, Ott H (eds) Processing and Use of Sewage Sludge. Reidel Pub, Dorchester, pp 431–434Google Scholar
  75. Serafimoviska JM, Arpadjan S, Stavilov T, Teskova K (2013) Study of the antimony species distribution in industrially contaminated soils. J Soils Sediments 13:294–303Google Scholar
  76. Singh BW (2007) Natural attenuation of trace element availability in soils. In: Hamon R, Mclaughlin M, Lombi E (eds) Soc Environ Toxicol Chem, Pensacola FL 1–18Google Scholar
  77. Sistani KR, Mays DA, Taylor RW, Buford C (1995) Evaluation of four chemical extractants for metal determinations in wetland soils. Commun Soil Sci Plant 26:2167–2180Google Scholar
  78. Smilde KW, Luit BV, Driel WV (1992) The extraction from soil and absorption by plants of applied Zn and Cd. Plant Soil 143:215–221CrossRefGoogle Scholar
  79. Sutherland RA (2002) Comparison between non-residual Al, Co, Cu, Fe, Mn Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Appl Geochem 17:353–365CrossRefGoogle Scholar
  80. Száková J, Tlustoš P, Balík J, Pavlíková D, Balíková M (2001) A comparison of suitability of mild extraction procedures for determination of available portion of As, Cd, and Zn in soil. Chem List 95:179–183Google Scholar
  81. Theodoratos P, Papassiopi N, Xenidis A (2002) Evaluation of monobasic calcium phosphate immobilization of heavy metals in contaminated soils from Lavrion. J Hazard Mater 94:135–146CrossRefGoogle Scholar
  82. Thiry M, van Oort F (1999) Les phases minérales majeures et mineures d’une friche industrielle de métallurgie des métaux non ferreux: état d’altération, évolution géochimique et devenir des métaux polluants du site de Mortagne-du-Nord, In: Les cahiers des clubs CRIN, acte du colloque ‘La Spéciation des Métaux dans le Sol. Association ECRIN Paris pp. 108–159Google Scholar
  83. Tighe M, Lockwood P, Wilson S (2005) Adsorption of antimony (V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J Environ Monitor 7:1177–1185Google Scholar
  84. Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metal in soils and sediments. An account of the improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51:135–151CrossRefGoogle Scholar
  85. Uzu G, Sobanska S, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185CrossRefGoogle Scholar
  86. van der Sloot HA, Comans RNJ, Hjelmar O (1996) Similarities in the leaching behavior of trace contaminants from waste, stabilized waste, construction materials and soil. Sci Total Environ 178:111–126CrossRefGoogle Scholar
  87. Vaughan MA, Horlick G (1986) Oxide, hydroxide, and doubly charged analyte species in inductively coupled plasma/mass spectrometry. Appl Spectrosc 40:434–445CrossRefGoogle Scholar
  88. Wanat N, Austruy A, Joussein E, Soubrand M, Hitmi A, Gauthier-Moussard C, Lenain JF, Vernay P, Munch JC, Pichon M (2013) Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. J Geochem Explor 126–127:78–84CrossRefGoogle Scholar
  89. Wanat N, Joussein E, Soubrand M, Lenain JF (2014) Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates. Environ Geochem Health. doi: 10.1007/s10653-014-9596-5 Google Scholar
  90. Wang J, Zhang CB, Jin ZX (2009) The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulowniu fortunei (seem) Hems near a Pb/Zn smelter in Guangdong PR China. Geoderma 148:299–306CrossRefGoogle Scholar
  91. Whitten MG, Ritchie GSP (1991) Calcium chloride extractable cadmium as an estimate of cadmium uptake by subterranean clover. Aust J Soil Res 29:215–221CrossRefGoogle Scholar
  92. Xu D, Zhou P, Zhan J, Gao Y, Dou C, Sun Q (2013) Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotoxicol Environ Saf 90:103–111CrossRefGoogle Scholar
  93. Zhang J, Liu J, Li C, Nie Y, Jin Y (2008) Comparison of the fixation of heavy metals in raw material, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test. Cem Concr Res 38:675–680CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bashar Qasim
    • 1
    • 2
    Email author
  • Mikael Motelica-Heino
    • 1
  • Emmanuel Joussein
    • 3
  • Marilyne Soubrand
    • 3
  • Arnaud Gauthier
    • 4
  1. 1.ISTO Institut des Sciences de la Terre d’Orléans, UMR7327 CNRS-Université d’Orléans Campus GéosciencesOrléansFrance
  2. 2.Applied Sciences DepartmentUniversity of TechnologyBaghdadIraq
  3. 3.Université de Limoges, GRESE, EA 4330LimogesFrance
  4. 4.Laboratoire de Génie-Civil et géo Environnement, LGCgE-EA4515Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations