Environmental Science and Pollution Research

, Volume 22, Issue 8, pp 5667–5676 | Cite as

The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources

  • Claire M. Grison
  • Marine Mazel
  • Amandine Sellini
  • Vincent Escande
  • Jacques Biton
  • Claude Grison
Combining Phytoextraction and Ecological Catalysis: an Environmental, Ecological, Ethic and Economic Opportunity


Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes.


Phytoextraction Zn hyperaccumulating plant Leguminous Rhizobium metallidurans Ecocatalysis Bromination 



The authors would like to thank Agence Nationale de la Recherche (ANR 11ECOT 011 01), Centre National de la Recherche Scientifique (CNRS), Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME), and Fond Européen de Développement Régional (FEDER) program for financial supports.


  1. Alford ÉR, Pilon-Smits EAH, Fakra SC, Paschke MW (2012) Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. Am J Bot 99:1930–1941. doi: 10.3732/ajb.1200124 CrossRefGoogle Scholar
  2. Alloway BJ (1995) Heavy metals in soils. SpringerGoogle Scholar
  3. Anastas PT, Warner JC (1998) Principles of green chemistry. Green Chem Theory Pr 29–56Google Scholar
  4. Dorken G, Ferguson GP, French CE, Poon WCK (2012) Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. 3490–3502.Google Scholar
  5. Escande V, Garoux L, Grison C et al (2013a) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B Environ. doi: 10.1016/j.apcatb.2013.04.011 Google Scholar
  6. Escande V, Olszewski TK, Grison C (2013b) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. C R Chim. doi: 10.1016/j.crci.2013.09.009 Google Scholar
  7. Escande V, Olszewski TK, Petit E, Grison C (2014) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. ChemSusChem. doi: 10.1002/cssc.201400078 Google Scholar
  8. Escarré J, Lefèbvre C, Raboyeau S et al (2010) Heavy metal concentration survey in soils and plants of the les malines mining district (Southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504. doi: 10.1007/s11270-010-0547-1 CrossRefGoogle Scholar
  9. Frérot H, Lefèbvre C, Gruber W et al (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65. doi: 10.1007/s11104-005-5315-4 CrossRefGoogle Scholar
  10. Grison C, Escande V (2012) Utilisation de certaines plantes accumulatrices de manganese pour la mise en œuvre de reactions de chimie organiqueGoogle Scholar
  11. Grison C, Escande V (2013) Utilisation de certaines plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organiqueGoogle Scholar
  12. Grison C, Escande V (2014) Use of certain metal-accumulating plants for the performance of organic chemistry reactionsGoogle Scholar
  13. Grison C, Escarre J (2011) Use of metal-accumulating plants for the preparation of catalysts that can be used in chemical reactionsGoogle Scholar
  14. Grison C, Hosy F, Grison C et al (2010) Thlaspi caerulescens, un indicateur de la pollution d’un sol? Réflexion partagée entre étudiants et chercheurs autour d’un problème environnemental. Actual Chim 27–32Google Scholar
  15. Grison C, Escande V, Petit E et al (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. Rsc Adv 3:22340–22345. doi: 10.1039/C3RA43995J CrossRefGoogle Scholar
  16. Grison CM, Jackson S, Merlot S et al (2014a) Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol SubmittedGoogle Scholar
  17. Grison CM, Renard B-L, Grison C (2014b) A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress. Bioorg Chem 52:50–55. doi: 10.1016/j.bioorg.2013.11.006 CrossRefGoogle Scholar
  18. Kalsi PS (2007) Organic reactions stereochemistry and mechanism (Through Solved Problems). New Age InternationalGoogle Scholar
  19. L’Huillier L, Jaffré T, Wulff A (2010) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. Éd. IACGoogle Scholar
  20. Li Y-M, Chaney R, Brewer E et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. doi: 10.1023/A:1022527330401 CrossRefGoogle Scholar
  21. Losfeld G, de La Blache PV, Escande V, Grison C (2012a) Zinc hyperaccumulating plants as renewable resources for the chlorination process of alcohols. Green Chem Lett Rev 5:451–456. doi: 10.1080/17518253.2012.667157 CrossRefGoogle Scholar
  22. Losfeld G, Escande V, Jaffré T et al (2012b) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910. doi: 10.1016/j.chemosphere.2012.05.004 CrossRefGoogle Scholar
  23. Losfeld G, Escande V, Vidal de La Blache P et al (2012c) Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel–Crafts alkylation and acylation. Catal Today 189:111–116. doi: 10.1016/j.cattod.2012.02.044 CrossRefGoogle Scholar
  24. Losfeld G, Escande V, Mathieu T, Grison C (2013) Phytoextraction et biodégradation dynamisée: une approche interdisciplinaire inventive au service de l’environnement. Tech Ingénieur Innov En Environ. Base documentaire: TIB517DUOGoogle Scholar
  25. Mahieu S, Soussou S, Cleyet-Marel J-C et al (2013) Local adaptation of metallicolous and non-metallicolous Anthyllis vulneraria populations: their utilization in soil restoration: adaptation of a legume to metalliferous soils. Restor Ecol 21:551–559. doi: 10.1111/j.1526-100X.2012.00927.x CrossRefGoogle Scholar
  26. Mahmood T (2010) Phytoextraction of heavy metals-the process and scope for remediation of contaminated soils. Soil Environ 29:91–109Google Scholar
  27. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. doi: 10.1007/s11270-007-9401-5 CrossRefGoogle Scholar
  28. Pajuelo E, Carrasco JA, Romero LC et al (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (Thiol) lyase under metal stress. Plant Biol 9:672–681CrossRefGoogle Scholar
  29. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. John Wiley and SonsGoogle Scholar
  30. Robinson B, Fernández J-E, Madejón P et al (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125. doi: 10.1023/A:1022586524971 CrossRefGoogle Scholar
  31. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680CrossRefGoogle Scholar
  32. Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273. doi: 10.1039/b713736m CrossRefGoogle Scholar
  33. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 3352. doi: 10.1039/b803584a
  34. Singh OV, Labana S, Pandey G et al (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412. doi: 10.1007/s00253-003-1244-4 CrossRefGoogle Scholar
  35. Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321Google Scholar
  36. Vidal C, Chantreuil C, Berge O et al (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855. doi: 10.1099/ijs.0.003327-0 CrossRefGoogle Scholar
  37. Vogel AI, Tatchell AR, Furnis BS et al (1996) Vogel’s textbook of practical organic chemistry, 5th edn. Prentice Hall, HarlowGoogle Scholar
  38. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. doi: 10.1016/S0045-6535(02)00232-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claire M. Grison
    • 1
  • Marine Mazel
    • 2
  • Amandine Sellini
    • 2
  • Vincent Escande
    • 3
  • Jacques Biton
    • 2
  • Claude Grison
    • 3
  1. 1.Institut de Chimie Moléculaire et des Matériaux d’OrsayUniversité Paris SudOrsayFrance
  2. 2.STRATOZ SAClapiersFrance
  3. 3.Laboratory of Bioinspired chemistry and ecological innovationFRE 3673 CNRS University of Montpellier 2ClapiersFrance

Personalised recommendations