Environmental Science and Pollution Research

, Volume 22, Issue 4, pp 3127–3137 | Cite as

Electrocoagulation of colloidal biogenic selenium

  • Lucian C. Staicu
  • Eric D. van Hullebusch
  • Piet N. L. Lens
  • Elizabeth A. H. Pilon-Smits
  • Mehmet A. Oturan
Research Article

Abstract

Colloidal elemental selenium (Se(0)) adversely affects membrane separation processes and aquatic ecosystems. As a solution to this problem, we investigated for the first time the removal potential of Se(0) by electrocoagulation process. Colloidal Se(0) was produced by a strain of Pseudomonas fluorescens and showed limited gravitational settling. Therefore, iron (Fe) and aluminum (Al) sacrificial electrodes were used in a batch reactor under galvanostatic conditions. The best Se(0) turbidity removal (97 %) was achieved using iron electrodes at 200 mA. Aluminum electrodes removed 96 % of colloidal Se(0) only at a higher current intensity (300 mA). At the best Se(0) removal efficiency, electrocoagulation using Fe electrode removed 93 % of the Se concentration, whereas with Al electrodes the Se removal efficiency reached only 54 %. Due to the less compact nature of the Al flocs, the Se-Al sediment was three times more voluminous than the Se-Fe sediment. The toxicity characteristic leaching procedure (TCLP) test showed that the Fe-Se sediment released Se below the regulatory level (1 mg L−1), whereas the Se concentration leached from the Al-Se sediment exceeded the limit by about 20 times. This might be related to the mineralogical nature of the sediments. Electron scanning micrographs showed Fe-Se sediments with a reticular structure, whereas the Al-Se sediments lacked an organized structure. Overall, the results obtained showed that the use of Fe electrodes as soluble anode in electrocoagulation constitutes a better option than Al electrodes for the electrochemical sedimentation of colloidal Se(0).

Keywords

Elemental selenium Colloids Electrocoagulation Aluminum electrodes Iron electrodes TCLP 

Notes

Acknowledgments

The authors would like to thank the European Commission for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the grant agreement FPA no. 2010-0009. A special thanks to Dr. David Huguenot and Dr. Rossana Combes for their respective ICP-OES and ESEM expert technical assistance. The analytical part (ICP-OES) was supported by a grant of the Region Ile de France.

References

  1. Akbal F, Camci S (2011) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 269(1–3):214–222CrossRefGoogle Scholar
  2. Al Aji B, Yavuz Y, Koparal AS (2012) Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep Purif Technol 86:248–254CrossRefGoogle Scholar
  3. Arredondo M, Nunez MT (2005) Iron and copper metabolism. Mol Asp Med 26:313–327CrossRefGoogle Scholar
  4. Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47(5):2401–2407CrossRefGoogle Scholar
  5. Canizares P, Carmona M, Lobato J, Martınez F, Rodrigo MA (2005) Electrodissolution of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185CrossRefGoogle Scholar
  6. Canizares P, Martınez F, Jimenez C, Lobato J, Rodrigo MA (2007) Coagulation and electrocoagulation of wastes polluted with colloids. Sep Sci Technol 42:2157–2175CrossRefGoogle Scholar
  7. Chapman PM, Adams WJ, Brooks M, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw P (2010) Ecological assessment of selenium in the aquatic environments. SETAC Press, PensacolaCrossRefGoogle Scholar
  8. Dobias J, Suvorova EI, Bernier-Latmani R (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22(19):195605CrossRefGoogle Scholar
  9. Donald AM (2003) The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat Mater 2:511–513CrossRefGoogle Scholar
  10. Dong Y, Gandhi N, Hauschild MZ (2014) Development of comparative toxicity potentials of 14 cationic metals in freshwater. Chemosphere 112:26–33CrossRefGoogle Scholar
  11. Duan J, Gregory J (2003) Coagulation by hydrolyzing metal salts. Adv Colloid Interf 100–102:475–502CrossRefGoogle Scholar
  12. Gamage NP, Chellam S (2011) Aluminum electrocoagulation pretreatment reduces fouling during surface water microfiltration. J Membr Sci 379:97–105CrossRefGoogle Scholar
  13. Gensemer RW, Playle RC (1999) The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Technol 29(4):315–450CrossRefGoogle Scholar
  14. Hanai O, Hasar H (2011) Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes. J Hazard Mater 189:572–576CrossRefGoogle Scholar
  15. Harif T, Adin A (2011) Size and structure evolution of kaolin-Al(OH)3 flocs in the electroflocculation process: a study using static light scattering. Water Res 45:6195–6206CrossRefGoogle Scholar
  16. Harif T, Khai M, Adin A (2012) Electrocoagulation versus chemical coagulation: coagulation/flocculation mechanisms and resulting floc characteristics. Water Res 46:3177–3188CrossRefGoogle Scholar
  17. Heidmann I, Calmano W (2010) Removal of Ni, Cu and Cr from a galvanic wastewater in an electrocoagulation system with Fe- and Al-electrodes. Sep Purif Technol 71:308–314CrossRefGoogle Scholar
  18. Holt PK, Barton GW, Wark M, Mitchell CA (2002) A quantitative comparison between chemical dosing and electrocoagulation. Colloid Surface A 211:233–248CrossRefGoogle Scholar
  19. Holt PK, Barton GW, Mitchell CA (2005) The future of electrocoagulation as a localized water treatment technology. Chemosphere 59:335–367CrossRefGoogle Scholar
  20. Jarvis P, Jefferson B, Gregory J, Parsons SA (2005) A review of floc strength and breakage. Water Res 39:3121–3137CrossRefGoogle Scholar
  21. Kabdasli I, Arslan-Alaton I, Olmez-Hanci T, Tunai O (2012) Electrocoagulation applications for industrial wastewaters: a critical review. Environ Technol Rev 1:2–45CrossRefGoogle Scholar
  22. Khandegar V, Saroha AK (2013) Electrocoagulation for the treatment of textile industry effluent—a review. J Environ Manag 128:949–963CrossRefGoogle Scholar
  23. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307Google Scholar
  24. Lakshmanan D, Clifford DA, Samanta G (2009) Ferrous and ferric ion generation during iron electrocoagulation. Environ Sci Technol 43:3853–3859Google Scholar
  25. Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57(1–2):39–49CrossRefGoogle Scholar
  26. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56CrossRefGoogle Scholar
  27. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3622CrossRefGoogle Scholar
  28. Lide DR (2004) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca RatonGoogle Scholar
  29. Luoma SN, Johns C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder JR (1992) Determination of selenium bioavailability to a bivalve from particulate and solute pathways. Environ Sci Technol 26:485–491CrossRefGoogle Scholar
  30. Mechelhoff M, Kelsall GH, Graham NJD (2013) Super-faradaic charge yields for aluminum dissolution in neutral aqueous solutions. Chem Eng Sci 95:353–359CrossRefGoogle Scholar
  31. Mello Ferreira A, Marchesiello M, Thivel PX (2013) Removal of copper, zinc and nickel present in natural water containing Ca2+ and HCO3 ions by electrocoagulation. Sep Purif Technol 107:109–117CrossRefGoogle Scholar
  32. Mollah MYA, Schennach R, Parga J, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater B84:29–41CrossRefGoogle Scholar
  33. Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL (2004) Fundamental, present and future perspectives of electrocoagulation. J Hazard Mater 114:199–210CrossRefGoogle Scholar
  34. Moreno CHA, Cocke DL, Gomes JAG, Morkovsky P, Parga JR, Peterson E, Garcia C (2009) Electrochemical reactions for electrocoagulation using iron electrodes. Ind Eng Chem Res 48:2275–2282CrossRefGoogle Scholar
  35. Mouedhen G, Feki M, Wery MDP, Ayedi HF (2008) Behavior of aluminum electrodes in electrocoagulation process. J Hazard Mater 150:124–135CrossRefGoogle Scholar
  36. Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In Jacobs LM (ed) Selenium in agriculture and the environment. Am S Agron S Sci. Madison, Wisconsin, series number 23, pp 133–177Google Scholar
  37. Öncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. J Environ Chem Eng 1:989–995CrossRefGoogle Scholar
  38. Picard T, Cathalifaud-Feuillade G, Mazet M, Vandensteendam C (2000) Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J Environ Monit 2:77–80CrossRefGoogle Scholar
  39. Presser TS, Luoma SN (2006) Forecasting selenium discharges to the San Francisco Bay-Delta Estuary: ecological effects of a proposed San Luis Drain extension: U.S. Geological Survey Professional Paper 1646Google Scholar
  40. Purkerson DG, Doblin MA, Bollens SM, Luoma SN, Cutter GA (2003) Selenium in San Francisco Bay zooplankton: potential effects of hydrodynamics and food web interactions. Estuaries 26:956–969CrossRefGoogle Scholar
  41. Richens DT (1997) The chemistry of aqua ions. Wiley, ChichesterGoogle Scholar
  42. Roberge PR (2008) Corrosion engineering: principles and practice. McGraw-Hill ProfessionalGoogle Scholar
  43. Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated selenium on the bivalve Potamocorbila amuresis. Environ Sci Technol 34:4504–4510CrossRefGoogle Scholar
  44. Simmons DB, Wallschlaeger D (2005) A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem 24:1331–1343CrossRefGoogle Scholar
  45. Staicu LC, van Hullebusch ED, Oturan MA, Ackerson CJ, Lens PNL (2014a) Removal of colloidal biogenic selenium from wastewater (submitted to Chemosphere)Google Scholar
  46. Staicu LC, Ackerson CJ, Cornelis P, Ye L, Berendsen R, Hunter WJ, Noblitt SD, Henry CS, Cappa JJ, Montenieri R, Wong AO, Musilova L, Novakova M, Lens PNL, Pilon-Smits EAH (2014b) High-speed selenium oxyanion reduction by Pseudomonas moraviensis stanleyae, an endophyte of selenium hyperaccumulator Stanleya pinnata (submitted to Syst Appl Microbiol)Google Scholar
  47. Trompette JL, Vergnes V, Coufort C (2008) Enhanced electrocoagulation efficiency of lyophobic colloids in the presence of ammonium electrolytes. Colloid Surface A 315:66–73CrossRefGoogle Scholar
  48. Turchiuli C, Fargues C (2004) Influence of structural properties of alum and ferric flocs on sludge dewaterability. Chem Eng J 103(1–3):123–131CrossRefGoogle Scholar
  49. Un UT, Koparal AS, Ogutveren UB (2009) Hybrid processes for the treatment of cattle-slaughterhouse wastewater using Al and Fe electrodes. J Hazard Mater 164:580–586CrossRefGoogle Scholar
  50. US EPA (2010) North San Francisco Bay selenium characterization study plan (2010–2012). http://www2.epa.gov/sites/production/files/documents/epa-r09-ow-2010-0976-0023-1.pdf
  51. US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Method 1311. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf
  52. US EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Method 1311, Chapter 7 – Characteristics, introduction and regulatory definitions. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/chap7.pdf
  53. USEPA (1999) Enhanced coagulation and enhanced precipitative softening guidance manual. EPA 815-R-99-012Google Scholar
  54. Vasudevan S, Oturan MA (2014) Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett 12:97–108CrossRefGoogle Scholar
  55. Vasudevan S, Lakshmi J, Sozhan G (2009) Studies on the removal of iron from drinking water by electrocoagulation—a clean process. Clean 37:45–51Google Scholar
  56. Zhang Y, Zahir ZA, Frankenberger WT Jr (2004) Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual 33:559–564CrossRefGoogle Scholar
  57. Zhu B, Clifford DA, Chellam S (2006) Comparison of electrocoagulation and chemical coagulation pretreatment for enhanced virus removal using microfiltration membranes. Water Res 13:3098–3108Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lucian C. Staicu
    • 1
    • 2
  • Eric D. van Hullebusch
    • 2
  • Piet N. L. Lens
    • 1
  • Elizabeth A. H. Pilon-Smits
    • 3
  • Mehmet A. Oturan
    • 2
  1. 1.Department of Environmental Engineering and Water TechnologyUNESCO-IHE Institute for Water EducationDelftThe Netherlands
  2. 2.Laboratoire Géomatériaux et Environnement, EA 4508, UPEMUniversité Paris-EstMarne-la-Vallée, Cedex 2France
  3. 3.Biology DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations