Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 4, pp 3023–3031 | Cite as

Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress

  • Nevien K. M. Abdelkhalek
  • Emad W. Ghazy
  • Mohamed M. Abdel-DaimEmail author
Research Article

Abstract

Spirulina platensis (SP) is one of the most commonly used dietary supplements in human and many animal species, including fish. Recently, it has gained more attention in fish not only for its growth-promoting and immunomodulatory effects but also for its antioxidant potential. The present study was conducted to investigate the protective role of two different dietary levels of SP on freshwater Nile tilapia; Oreochromis niloticus exposed to subacute deltamethrin (DLM) intoxication. Spirulina was supplemented at levels of 0.5 and 1 % in the diet along with DLM at a concentration of 1.46 μg/l for 28 days. Serum biochemical parameters, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein, albumin, cholesterol, urea, uric acid and creatinine, were estimated. In addition, the level of malondialdehyde (MDA) was analysed as a lipid peroxidation marker. Reduced glutathione (GSH) content and glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities were analysed as antioxidant biomarkers in liver, kidney and gills. The results revealed that DLM intoxication increased serum AST, ALT, ALP, cholesterol, urea, uric acid, creatinine and tissue MDA, while decreased serum total protein and albumin as well as tissue GSH level and GSH-Px, SOD and CAT activities. SP supplementation at the two tested levels enhanced all altered serum biochemical parameters as well as tissue lipid peroxidation and antioxidant biomarkers. Therefore, it could be concluded that SP administration could minimize DLM-induced toxic effects by its free radical scavenging and potent antioxidant activity.

Keywords

Oreochromis niloticus Deltamethrin Oxidative stress Spirulina Antioxidant 

Notes

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Supplementary material

11356_2014_3578_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. Abdel-Daim MM (2014) Pharmacodynamic interaction of Spirulina platensis with erythromycin in Egyptian Baladi bucks (Capra hircus). Small Rumin Res 120:234–241CrossRefGoogle Scholar
  2. Abdel-Daim MM, Abuzead SM, Halawa SM (2013) Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. Plos One 8:e72991CrossRefGoogle Scholar
  3. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  4. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475Google Scholar
  5. Alvarenga RR, Rodrigues PB, Cantarelli VS, Zangeronimo MG, Júnior JWS, Silva LR, Santos LM, Pereira LJ (2011) Energy values and chemical composition of spirulina (Spirulina platensis) evaluated with broilers. Rev Bras Zootec 40:992–996CrossRefGoogle Scholar
  6. Amin KA, Hashem KS (2012) Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res 8:45CrossRefGoogle Scholar
  7. Ansari RA, Kaur M, Ahmad F, Rahman S, Rashid H, Islam F, Raisuddin S (2009) Genotoxic and oxidative stress-inducing effects of deltamethrin in the erythrocytes of a freshwater biomarker fish species, Channa punctata Bloch. Environ Toxicol 24:429–436CrossRefGoogle Scholar
  8. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888Google Scholar
  9. Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. Rev Environ Contam Toxicol 108:133–177Google Scholar
  10. Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi JS, Symington S, Clark JM, Burr S, Ray D (2009) Evidence for a separate mechanism of toxicity for the type I and the type II pyrethroid insecticides. Neurotoxicology 30(Suppl 1):S17–S31CrossRefGoogle Scholar
  11. Chinn K, Narahashi T (1986) Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells. J Physiol 380:191–207CrossRefGoogle Scholar
  12. Coulombe JJ, Favreau L (1963) A new simple semimicro method for colorimetric determination of urea. Clin Chem 9:102–108Google Scholar
  13. Datta M, Kaviraj A (2003) Ascorbic acid supplementation of diet for reduction of deltamethrin induced stress in freshwater catfish Clarias gariepinus. Chemosphere 53:883–888CrossRefGoogle Scholar
  14. Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31:87–96CrossRefGoogle Scholar
  15. Du Y, Song W, Groome JR, Nomura Y, Luo N, Dong K (2010) A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides. Toxicol Appl Pharmacol 247:53–59CrossRefGoogle Scholar
  16. El-Sayed YS, Saad TT (2008) Subacute intoxication of a deltamethrin-based preparation (Butox) 5% EC) in monosex Nile tilapia, Oreochromis niloticus L. Basic Clin Pharmacol Toxicol 102:293–299CrossRefGoogle Scholar
  17. El-Sayed YS, Saad TT, El-Bahr SM (2007) Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Pharmacol 24:212–217CrossRefGoogle Scholar
  18. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177CrossRefGoogle Scholar
  19. Firat O, Cogun HY, Yuzereroglu TA, Gok G, Kargin F, Kotemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657–666CrossRefGoogle Scholar
  20. Golow AA, Godzi TA (1994) Acute toxicity of deltamethrin and dieldrin to Oreochromis niloticus (LIN). Bull Environ Contam Toxicol 52:351–354CrossRefGoogle Scholar
  21. Hosseini SM, Khosravi-Darani K, Mozafari MR (2013) Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem 13:1231–1237CrossRefGoogle Scholar
  22. Ismail MF, Ali DA, Fernando A, Abdraboh ME, Gaur RL, Ibrahim WM, Raj MH, Ouhtit A (2009) Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina. Int J Biol Sci 5:377–387CrossRefGoogle Scholar
  23. Issam C, Samir H, Zohra H, Monia Z, Hassen BC (2009) Toxic responses to deltamethrin (DM) low doses on gonads, sex hormones and lipoperoxidation in male rats following subcutaneous treatments. J Toxicol Sci 34:663–670CrossRefGoogle Scholar
  24. Karadeniz A, Cemek M, Simsek N (2009) The effects of Panax ginseng and Spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicol Environ Saf 72:231–235CrossRefGoogle Scholar
  25. Koprucu K, Seker E (2008) Acute toxicity of deltamethrin for freshwater mussel, Unio elongatulus eucirrus bourguignat. Bull Environ Contam Toxicol 80:1–4CrossRefGoogle Scholar
  26. Koprucu SS, Yonar E, Seker E (2008) Effects of deltamethrin on antioxidant status and oxidative stress biomarkers in freshwater mussel, Unio elongatulus eucirrus. Bull Environ Contam Toxicol 81:253–257CrossRefGoogle Scholar
  27. Larsen K (1972) Creatinine assay in the presence of protein with LKB 8600 Reaction Rate Analyser. Clin Chim Acta 38:475–476CrossRefGoogle Scholar
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  29. Mehlhorn H, Schumacher B, Jatzlau A, Abdel-Ghaffar F, Al-Rasheid KA, Klimpel S, Pohle H (2011) Efficacy of deltamethrin (Butox(R) 7.5 pour on) against nymphs and adults of ticks (Ixodes ricinus, Rhipicephalus sanguineus) in treated hair of cattle and sheep. Parasitol Res 108:963–971CrossRefGoogle Scholar
  30. Mestres R, Mestres G (1992) Deltamethrin: uses and environmental safety. Rev Environ Contam Toxicol 124:1–18Google Scholar
  31. Michelangeli F, Robson MJ, East JM, Lee AG (1990) The conformation of pyrethroids bound to lipid bilayers. Biochim Biophys Acta 1028:49–57CrossRefGoogle Scholar
  32. Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278CrossRefGoogle Scholar
  33. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854CrossRefGoogle Scholar
  34. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169Google Scholar
  35. Rasool M, Sabina EP, Lavanya B (2006) Anti-inflammatory effect of Spirulina fusiformis on adjuvant-induced arthritis in mice. Biol Pharm Bull 29:2483–2487CrossRefGoogle Scholar
  36. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63Google Scholar
  37. Richmond W (1973) Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin Chem 19:1350–1356Google Scholar
  38. Romay C, Ledon N, Gonzalez R (1998) Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm Res 47:334–338CrossRefGoogle Scholar
  39. Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216CrossRefGoogle Scholar
  40. Salgado VL, Herman MD, Narahashi T (1989) Interactions of the pyrethroid fenvalerate with nerve membrane sodium channels: temperature dependence and mechanism of depolarization. Neurotoxicology 10:1–14Google Scholar
  41. Sayeed I, Parvez S, Pandey S, Bin-Hafeez B, Haque R, Raisuddin S (2003) Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol Environ Saf 56:295–301CrossRefGoogle Scholar
  42. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59CrossRefGoogle Scholar
  43. Srivastav AK, Srivastava SK, Srivastav SK (1997) Impact of deltamethrin on serum calcium and inorganic phosphate of freshwater catfish, Heteropneustes fossilis. Bull Environ Contam Toxicol 59:841–846CrossRefGoogle Scholar
  44. Tietz NW, Burtis CA, Duncan P, Ervin K, Petitclerc CJ, Rinker AD, Shuey D, Zygowicz ER (1983) A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem 29:751–761Google Scholar
  45. Upasani CD, Balaraman R (2003) Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother Res 17:330–334CrossRefGoogle Scholar
  46. Vadiraja BB, Gaikwad NW, Madyastha KM (1998) Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicty in rats. Biochem Biophys Res Commun 249:428–431CrossRefGoogle Scholar
  47. van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  48. Whitehead TP, Bevan EA, Miano L, Leonardi A (1991) Defects in diagnostic kits for determination of urate in serum. Clin Chem 37:879–881Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nevien K. M. Abdelkhalek
    • 1
  • Emad W. Ghazy
    • 2
  • Mohamed M. Abdel-Daim
    • 3
    Email author
  1. 1.Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary MedicineEl Mansoura UniversityMansouraEgypt
  2. 2.Department of Clinical Pathology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafr El-SheikhEgypt
  3. 3.Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt

Personalised recommendations