Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 4, pp 3138–3148 | Cite as

Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments

  • Irene Kranzioch
  • Selina Ganz
  • Andreas Tiehm
Research Article

Abstract

The anaerobic Dehalococcoides spp. is the only microorganism known to completely dechlorinate the hazardous compounds tetrachloroethene (PCE) or trichloroethene (TCE) via dichloroethene (DCE) and vinyl chloride (VC) to the terminal product, ethene. In this study, growth of Dehalococcoides spp. (DHC) and the expression of DHC dehalogenase genes were demonstrated for Yangtze enrichment cultures. Reductive dechlorination of chloroethenes occurred in Yangtze sediment without the addition of any external auxiliary substrates. All Yangtze enrichment cultures completely dechlorinated PCE and cis-DCE to ethene. To investigate expression of the dehalogenase genes pceA, tceA, vcrA, and bvcA, a protocol for messenger RNA (mRNA) extraction followed by reverse transcription and quantitative PCR analysis was established. During dechlorination, an increase in gene copy numbers of pceA, tceA, and vcrA was observed. However, temporary formation of mRNA was only measured in the case of the dehalogenase genes tceA and vcrA. Comparison of DHC dehalogenase patterns indicated that the Yangtze DHC community does not match any of the previously published enrichment cultures that were obtained from contaminated areas in the USA or Europe.

Keywords

Chloroethenes Dehalococcoides Dehalogenases Yangtze River sediments mRNA Reductive dechlorination 

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the German Ministry of Education and Research (BMBF, Grant No. 02WT1130). This study is part of the Sino-German Yangtze-Hydro-Project (www.yangtze-project.de). Eva Lüthen is also acknowledged for preparing the sediment microcosm experiments, and Prof. Chaofeng Shen for translation of Chinese publications.

Supplementary material

11356_2014_3574_MOESM1_ESM.doc (146 kb)
ESM 1 (DOC 145 kb)

References

  1. Aktaş Ö, Schmidt KR, Mungenast S, Stoll C, Tiehm A (2012) Effect of chloroethene concentrations and granular activated carbon on reductive dechlorination rates and growth of Dehalococcoides spp. Bioresour Technol 103:286–292. doi: 10.1016/j.biortech.2011.09.119 CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  3. Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Löffler FE (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ Sci Technol 42:5718–5726. doi: 10.1021/es703227g CrossRefGoogle Scholar
  4. Bælum J, Chambon JC, Scheutz C, Binning PJ, Laier T, Bjerg PL, Jacobsen CS (2013) A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment. Water Res 47:2467–2478. doi: 10.1016/j.watres.2013.02.016 CrossRefGoogle Scholar
  5. Behrens S, Azizian MF, McMurdie PJ, Sabalowsky A, Dolan ME, Semprini L, Spormann AM (2008) Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl Environ Microbiol 74:5695–5703. doi: 10.1128/AEM.00926-08 CrossRefGoogle Scholar
  6. Carreón-Diazconti C, Santamaría J, Berkompas J, Field JA, Brusseau ML (2009) Assessment of in situ reductive dechlorination using compound-specific stable isotopes, functional gene PCR, and geochemical data. Environ Sci Technol 43:4301–4307. doi: 10.1021/es803308q CrossRefGoogle Scholar
  7. Cupples AM (2008) Real-time PCR quantification of Dehalococcoides populations: methods and applications. J Microbiol Methods 72:1–11. doi: 10.1016/j.mimet.2007.11.005 CrossRefGoogle Scholar
  8. Fung JM, Morris RM, Adrian L, Zinder SH (2007) Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 73:4439–4445. doi: 10.1128/AEM.00215-07 CrossRefGoogle Scholar
  9. Han FA, Chen J, Jiang ZF (2011) Investigation of VOCs and SVOCs in surface water source in Jiangsu, Zhejiang, Shandong Province, China. J Environ Health 28:890–894 (in Chinese)Google Scholar
  10. Ise K, Suto K, Inoue C (2011) Microbial diversity and changes in the distribution of dehalogenase genes during dechlorination with different concentrations of cis-DCE. Environ Sci Technol 45:5339–5345. doi: 10.1021/es104199y CrossRefGoogle Scholar
  11. Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L (2005) An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71:3866–3871. doi: 10.1128/AEM.71.7.3866-3871.2005 CrossRefGoogle Scholar
  12. Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351. doi: 10.1128/AEM.70.10.6347-6351.2004 CrossRefGoogle Scholar
  13. Kranzioch I, Stoll C, Holbach A, Chen H, Wang L, Zheng B, Norra S, Bi Y, Schramm K-W, Tiehm A (2013) Dechlorination and organohalide-respiring bacteria dynamics in sediment samples of the Yangtze Three Gorges Reservoir. Environ Sci Pollut R 20:7046–7056. doi: 10.1007/s11356-013-1545-9 CrossRefGoogle Scholar
  14. Lee PKH, Johnson DR, Holmes VF, He J, Alvarez-Cohen L (2006) Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microb 72(9):6161–6168. doi: 10.1128/AEM.01070-06
  15. Lee J, Lee TK, Löffler FE, Park J (2011) Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation 22:687–698. doi: 10.1007/s10532-010-9429-x CrossRefGoogle Scholar
  16. Lee PKH, Cheng D, West KA, Alvarez-Cohen L, He J (2013) Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ Microbiol 15:2293–2305. doi: 10.1111/1462-2920.12099 CrossRefGoogle Scholar
  17. Lee PKH, Macbeth TW, Sorenson KS, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74:2728–2739. doi: 10.1128/AEM.02199-07 CrossRefGoogle Scholar
  18. Li B, Chen H, Cao X (2006) Chlorinated hydrocarbons and BTEX in Yangtze River Delta region shallow groundwater, China. http://en.cgs.gov.cn/Achievement/The34thCongress/Recovery/18687.htm. Accessed 02 October 2013
  19. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide–respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635. doi: 10.1099/ijs.0.034926-0 CrossRefGoogle Scholar
  20. Lohner ST, Tiehm A (2009) Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation. Environ Sci Technol 43:7098–7104. doi: 10.1021/es900835d CrossRefGoogle Scholar
  21. Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: Sequence of tceA and substrate range characterization. Appl Environ Microbiol 66:5141–5147. doi: 10.1128/AEM.66.12.5141-5147.2000 CrossRefGoogle Scholar
  22. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275Google Scholar
  23. Maphosa F, de Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28:308–316. doi: 10.1016/j.tibtech.2010.03.005 CrossRefGoogle Scholar
  24. Matturro B, Aulenta F, Majone M, Petrangeli PM, Tandoi V, Rossetti S (2012) Field distribution and activity of chlorinated solvents degrading bacteria by combining CARD-FISH and real-time PCR. New Biotechnol 30(1):23–32. doi: 10.1016/j.nbt.2012.07.006 CrossRefGoogle Scholar
  25. Matturro B, Tandoi V, Rossetti S (2013) Different activity levels of Dehalococcoides mccartyi revealed by FISH and CARD-FISH under non-steady and pseudo-steady state operating conditions. New Biotechnol 30(6):756–762. doi: 10.1016/j.nbt.2013.07.003 CrossRefGoogle Scholar
  26. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888. doi: 10.1128/AEM.70.8.4880-4888.2004 CrossRefGoogle Scholar
  27. Pöritz M, Goris T, Wubet T, Tarkka MT, Buscot F, Nijenhuis I, Lechner U, Adrian L (2013) Genome sequences of two dehalogenation specialists – Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiol Lett 343:101–104. doi: 10.1111/1574-6968.12160 CrossRefGoogle Scholar
  28. Rahm BG, Richardson RE (2008) Correlation of respiratory gene expression levels and pseudo-steady-state PCE respiration rates in Dehalococcoides ethenogenes. Environ Sci Technol 42:416–421. doi: 10.1021/es071455s CrossRefGoogle Scholar
  29. Schmidt KR, Stoll C, Tiehm A (2006) Evaluation of 16S-PCR detection of Dehalococcoides at two chloroethene-contaminated sites. Water Sci Technol Water Supply 6:129. doi: 10.2166/ws.2006.787 CrossRefGoogle Scholar
  30. Schmidt KR, Tiehm A (2008) Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Sci Technol 58:1137–1145. doi: 10.2166/wst.2008.729 CrossRefGoogle Scholar
  31. Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes-aspects of field application. Curr Opin Biotechnol 22:415–421. doi: 10.1016/j.copbio.2011.02.003 CrossRefGoogle Scholar
  32. Wolf A, Bergmann A, Wilken R-D, Gao X, Bi Y, Chen H, Schüth C (2013) Occurrence and distribution of organic trace substances in waters from the Three Gorges Reservoir, China. Environ Sci Pollut Res Int 20:7124–7139. doi: 10.1007/s11356-013-1929-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyDVGW-Technologiezentrum Wasser (TZW)KarlsruheGermany

Personalised recommendations