Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 5, pp 3739–3747 | Cite as

Physiological and biochemical responses of Eichhornia crassipes exposed to Cr (III)

  • C. I. González
  • M. A. Maine
  • J. Cazenave
  • G. C. Sanchez
  • M. P. Benavides
Research Article

Abstract

The effect of exposure of Eichhornia crassipes to Cr (III) was assessed by measuring changes in photosynthetic pigments, malondialdehyde, superoxide dismutase, glutathione reductase, catalase, and guaiacol peroxidase activities, as well as Cr concentration in tissues. Cr concentration in roots was significantly higher than in aerial parts and increased with Cr concentration in water. Photosynthetic pigments increased significantly, whereas the activities of antioxidant enzymes varied differently in plant tissues. Low Cr concentrations induced a rapid response of E. crassipes during short-term exposure, implying that the antioxidant system conferred redox homeostasis. Results showed that Cr (III) was more toxic at the two highest concentrations and long-term exposure, while it was not harmful but beneficial at the two lowest concentrations and short-term exposure. This work concludes that E. crassipes was able to grow under Cr (III) stress by protecting itself with an increase in the activity of its antioxidant system.

Keywords

Oxidative stress Hormesis Antioxidant enzyme defense system Macrophyte Bioaccumulation Lipid peroxidation 

Notes

Acknowledgments

Financial support for this research work was provided by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL)-Project CAI + D, and Agencia de Promoción Científica y Tecnológica (ANPCyT).

References

  1. Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99(17):8436–8440CrossRefGoogle Scholar
  2. Arnon DI (1949) Copper enzyme in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15CrossRefGoogle Scholar
  3. Barton LL, Johnson GV, O’Nan AG, Wagener BM (2000) Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. J Plant Nutr 23(11–12):1833–1845CrossRefGoogle Scholar
  4. Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem Rev 44(1):276–287CrossRefGoogle Scholar
  5. Bergmeyer HU (1974) Methods of enzymatic analysis 1, 2nd edn. Academic, New York, p 495Google Scholar
  6. Bonet A, Poschenrieder C, Barcelo J (1991) Chromium III ion interaction in Fe deficient and Fe sufficient bean plants. I. Growth and nutrient content. J Plant Nutr 14:403–414CrossRefGoogle Scholar
  7. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRefGoogle Scholar
  8. Calabrese EJ (2005) Paradigm lost, paradigm found: the reemergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut 138(3):379–411CrossRefGoogle Scholar
  9. Calabrese EJ, Baldwin LA (2003a) Toxicology rethinks its central belief: hormesis demands a reappraisal of the way risks are assessed. Nature 421:691–692CrossRefGoogle Scholar
  10. Calabrese EJ, Baldwin LA (2003b) The hormetic dose–response model is more common than the threshold model in toxicology. Toxicol Sci 71(2):246–250CrossRefGoogle Scholar
  11. Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO (2007) The occurrence of hormesis in plants and algae. Dose Resp 5(2):150–162CrossRefGoogle Scholar
  12. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347CrossRefGoogle Scholar
  13. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Aquiron Pollut 109(1):69–74CrossRefGoogle Scholar
  14. Delgado M, Bigeriego M, Duardiola E (1993) Uptake of Zn, Cr and Cd by water hyacinths. Water Res 27(2):269–272CrossRefGoogle Scholar
  15. El-Bassam N (1978) Spurenelemente: Nährstoffe und Gift zugleich. Kali Briefe 14(4):255–272, deutschGoogle Scholar
  16. Espinoza-Quiñones FR, Martin N, Stutz G, Tirao G, Palácio SM, Rizzutto MA, Módenes AN, Silva Junior FG, Szymanski N, Kroumov AD (2009) Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission. Water Res 43:4159–4166CrossRefGoogle Scholar
  17. Fett JP, Cambraia J, Oliva MA, Jordao CP (1994) Absorption and distribution of Cd in water hyacinth plants. J Plant Nutr 17(7):1219–1230CrossRefGoogle Scholar
  18. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100(2):241–254CrossRefGoogle Scholar
  19. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the live of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494CrossRefGoogle Scholar
  20. Hadad HR, Maine MA, Mufarrege MM, Del Sastre MV, Di Luca GA (2011) Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes. J Hazard Mater 190(1–3):1016–1022CrossRefGoogle Scholar
  21. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322CrossRefGoogle Scholar
  22. Hasan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresour Technol 98(4):918–928CrossRefGoogle Scholar
  23. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198CrossRefGoogle Scholar
  24. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anghocyanin and other interfering compounds. Planta 207(4):604–611CrossRefGoogle Scholar
  25. Ingole NW, Bhole AG (2003) Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J Water Supply Res Technol AQUA 52:119–128Google Scholar
  26. Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichchornia crassipes (Mart.) Solms) grown under different nutrient condition to Fe-removal mechanisms in constructed wetlands. J Environ Manag 87(3):450–460CrossRefGoogle Scholar
  27. Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  28. Liao SW, Chang WL (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manag 42:60–68Google Scholar
  29. Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–359CrossRefGoogle Scholar
  30. Maine MA, Sune NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38(6):1494–501CrossRefGoogle Scholar
  31. Mangabeira PAO, Labejof L, Lamperti A, Almeida AF, Oliveira AH, Escaig F, Severo MIG, Silva DC, Saloes M, Mielke MS, Lucena ER, Martins MC, Santana KB, Gavrilov KL, Galle P, Levi-Setti R (2004) Accumulation of chromium in root tissues of Eichhornia crassipes (Mart.) Solms. in Cachoeira river-Brazil. Appl Surf Sci 231–232:497–501CrossRefGoogle Scholar
  32. Mangabeira PA, Ferreira AS, de Almeida AA, Fernandes VF, Lucena E, Souza VL, dos Santos Júnior AJ, Oliveira AH, Grenier-Loustalot MF, Barbier F, Silva DC (2011) Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals 24(6):1017–1026CrossRefGoogle Scholar
  33. Mittler R (2002) Oxidative stress antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410CrossRefGoogle Scholar
  34. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481CrossRefGoogle Scholar
  35. Mysliwa-Kurdziel B, Prasad MNV, Strzalka K (2004) Photosynthesis in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. University of Hyderabad, Hyderabad, pp 146–181CrossRefGoogle Scholar
  36. Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefGoogle Scholar
  37. Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitória AP (2009) Ecophysiological responses of water hyacinth exposed to Cr+3 and Cr+6. Environ Exp Bot 65(2):403–409CrossRefGoogle Scholar
  38. Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1):95–102CrossRefGoogle Scholar
  39. Pflugmacher S, Steinberg CEW (1997) Activity of phase I and phase II detoxification enzymes in aquatic macrophytes. J Appl Bot 71(5–6):144–146Google Scholar
  40. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25CrossRefGoogle Scholar
  41. Repetto M, Semprine J, Boveris A (2012) Lipid Peroxidation: chemical mechanism, biological implications and analytical determination. In: Dr Catalá A (ed) Lipid Peroxidation. InTech Publisher, Winchester, pp 3–30Google Scholar
  42. Shanker KA, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant Sci 166(4):1035–1043CrossRefGoogle Scholar
  43. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 12:1–26CrossRefGoogle Scholar
  44. Shewry PR, Peterson JP (1974) The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). J Exp Bot 25(4):785–797CrossRefGoogle Scholar
  45. Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132(3):209–214CrossRefGoogle Scholar
  46. Smith I, Vierheller T, Thorne C (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 75(2):408–413CrossRefGoogle Scholar
  47. Soltan ME, Rashed MN (2003) Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv Environ Res 7(2):321–334CrossRefGoogle Scholar
  48. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336CrossRefGoogle Scholar
  49. Tchobanoglous G, Maitski F, Thompson K, Chadwick T (1989) Evolution and performance of city of San Diego pilot-scale aquatic wastewater treatment system using water hyacinths. Res J Water Pollut Control Fed 61(11–12):1625–1635Google Scholar
  50. USEPA (1994) Method 200.2: sample preparation procedure for spectrochemical determination of total recoverable elements. Rev. 2.8. United States Environmental Protection Agency, Washington D.CGoogle Scholar
  51. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206CrossRefGoogle Scholar
  52. Vesk P, Allaway W (1997) Spatial variation of copper and lead concentrations of Eichhornia crassipes plants in a wetland receiving urban run-off. Aquat Bot 59(1):33–44CrossRefGoogle Scholar
  53. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 14(3):307–313CrossRefGoogle Scholar
  54. Wolverton BC and McDonald RC (1975) Water hyacinths and alligator weeds for removal of lead and mercury from polluted waters. NASA Tech. Memorandum X-72723, Nat Space Tech Lab, Bay St. Louis, MsGoogle Scholar
  55. Zhang XB, Liu P, Li DT, Xu GD, Hang MJ (2008) FTIR spectroscopic characterization of chromium-induced changes in root cell wall of plants. Guang Pu Xue Yu Guang Pu Fen Xi 28(5):1067–1070, ChineseGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. I. González
    • 1
  • M. A. Maine
    • 1
  • J. Cazenave
    • 2
  • G. C. Sanchez
    • 1
  • M. P. Benavides
    • 3
  1. 1.Química Analítica-Facultad de Ingeniería QuímicaConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), U.N.L.Santa FeArgentina
  2. 2.Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI-CONICET-UNL) and Dpto. Ciencias Biológicas, Facultad de Humanidades y Ciencias (FHUC-UNL), Paraje El PozoCiudad Universitaria U.N.L.Santa FeArgentina
  3. 3.Departamento de Química Biológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations