Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 4, pp 2726–2734 | Cite as

Analysis of airborne pesticides from different chemical classes adsorbed on Radiello® Tenax® passive tubes by thermal-desorption-GC/MS

  • Caroline Raeppel
  • Marie Fabritius
  • Marie Nief
  • Brice M. R. Appenzeller
  • Olivier Briand
  • Ludovic Tuduri
  • Maurice MilletEmail author
Research Article

Abstract

An analytical methodology using automatic thermal desorption (ATD) and GC/MS was developed for the determination of 28 pesticides of different chemical classes (dichlobenil, carbofuran, trifluralin, clopyralid, carbaryl, flazasulfuron, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, cyprodinil, bromoxynil, fluroxypyr, oxadiazon, myclobutanil, buprofezin, picloram, trinexapac-p-ethyl, ioxynil, diflufenican, tebuconazole, bifenthrin, isoxaben, alphacypermethrin, fenoxaprop and tau-fluvalinate) commonly used in nonagricultural areas in atmospheric samples. This methodology was developed to evaluate the indoor and outdoor atmospheric contamination by nonagricultural pesticides. Pesticides were sampled passive sampling tubes containing Tenax® adsorbent. Since most of these pesticides are polar (clopyralid, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, bromoxynil, fluroxypyr, picloram, trinexapac-p-ethyl and ioxynil), a derivatisation step is required. For this purpose, a silylation step using N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MtBSTFA) was added before thermal desorption. This agent was chosen since it delivers very specific ions on electronic impact (m/z = M-57). This method was established with special consideration for optimal thermal desorption conditions (desorption temperature, desorb flow and duration; trap heating duration and flow; outlet split), linear ranges, limits of quantification and detection which varied from 0.005 to 10 ng and from 0.001 to 2.5 ng, respectively, for an uncertainty varied from 8 to 30 %. The method was applied in situ to the analysis of passive tubes exposed during herbicide application to an industrial site in east of France.

Keywords

Nonagricultural pesticides Thermal desorption Silylation GC/MS Passive sampling Tenax® tubes 

Notes

Acknowledgments

The regional research programme “RE.A.LI.SE (REseau Alsacien Laboratoires d’Ingéniérie et Sciences de l’Environnement)”, the “Région Alsace”, the ERICHE programme from CNRS and the “AFSSET now ANSES” are gratefully acknowledged for their financial support. Caroline Raeppel wants to particularly thank the ADEME for their support of a Ph.D. grant.

Supplementary material

11356_2014_3534_MOESM1_ESM.doc (146 kb)
ESM 1 (DOC 145 kb)

References

  1. Barro R, Garcia-Jares C, Llompart M, Herminia Bollain M, Cela R (2006) Rapid and sensitive determination of pyrethroids indoors using active sampling followed by ultrasound-assisted solvent extraction and gas chromatography. J Chromatogr A 1111:1–10CrossRefGoogle Scholar
  2. Bouvier G, Blanchard O, Momas I, Seta N (2006) Pesticide exposure of non-ccupationally exposed subjects compared to some occupational exposure, a French pilot study. Sci Total Environ 366:74–91CrossRefGoogle Scholar
  3. Briand O, Millet M, Bertrand F, Clément M, Seux R (2002) Assessing the transfer of pesticides to the atmosphere during and after application. Development of a multiresidue method using adsorption on Tenax and thermal desorption-GC/MS. Anal Bioanal Chem 374:848–857CrossRefGoogle Scholar
  4. Cessna AJ, Kerr LA (1993) Use of an automated thermal desorption system for gas chromatographic analysis of the herbicides trifluralin and triallate in air samples. J Chromatogr A 642:417–423CrossRefGoogle Scholar
  5. Clément M, Arzel S, Le Bot B, Seux R, Millet M (2000) Adsorption/thermal desorption-GC/MS for the analysis of pesticides in the atmosphere. Chemosphere 40:49–56CrossRefGoogle Scholar
  6. Coscolla CI, Castillo M, Pastor A, Yusà V (2011) Determination of 40 currently used pesticides in airborne particulate matter (PM 10) by microwave-assisted extraction and gas chromatography coupled to triple quadrupole mass spectrometry. Orig Analytica Chimica Acta 693:72–81CrossRefGoogle Scholar
  7. Curl CL, Fenske RA, Kissel JC, Shirai JH, Moate TF, Griffith W et al (2002) Evaluation of take-home organophosphorous pesticides exposure among agricultural workers and their children. Environ Health Perspect 110:A787–A792CrossRefGoogle Scholar
  8. Dubus IG, Hollis JM, Brown CD (2000) Pesticides in rainfall in Europe. Environ Pollut 110:331–344CrossRefGoogle Scholar
  9. Foster W, Ferrari C, Turloni S (1995) Fresenius Environ Bull 4:256–261Google Scholar
  10. Jaber F, Schummer C, Al Chami J, Mirabel P, Millet M (2007) Analysis of phenols and nitrophenols as their t-butyldimethylsilyl derivatives in rainwater using solid-phase microextraction and gas chromatography mass spectrometry. Anal Bioanal Chem 387:2527–2535CrossRefGoogle Scholar
  11. Kuntasal OO, Karman D, Wang D, Tuncel SG, Tuncel G (2005) Determination of volatile organic compounds in different microenvironments by multibed adsorption and short-paththermal desorption followed by gas chromatographic–mass spectrometric analysis. J Chromatogr A 1099:43–54CrossRefGoogle Scholar
  12. Lewis RG, Fortune Ch R, Blanchard FT, Camann DE (2001) Movement and deposition of two organophosphorous pesticides within a residence after interior and exterior applications. J Air Waste Manag Assoc 51:339–351CrossRefGoogle Scholar
  13. Lu C, Fenske RA, Simcox NJ, Kalman D (2000) Pesticide exposure of children in an agricultural community, evidence of household proximity to farmland and take home exposure pathways. Environ Res 84:290–302CrossRefGoogle Scholar
  14. Majewski MS, Capel PD (1995) Pesticides in the atmosphere, distribution, trends, and governing factors. Ann Arbor Press, ChelseaGoogle Scholar
  15. McCaffrey CA, MacLachlan J, Brookes BI (1994) Adsorbent tube evaluation for the preconcentration of volatile organic compounds in air for analysis by gas chromatography-mass spectroscopy. Analyst 119:897–902CrossRefGoogle Scholar
  16. Mothiron E, Schummer C, Rizet A-L, Appenzeller BMR, Wennig R, Millet M (2010) Temporal variations of concentrations of currently used pesticides in the atmosphere of an urban area (Strasbourg, France). Environ Pollut 158:576–584CrossRefGoogle Scholar
  17. Pankow JF, Kristensen TJ, Isabelle LM (1983) Effects of flow rate and temperature on the thermal desorbability of polycyclic aromatic hydrocarbons and pesticides from Tenax-GC. Anal Chem 55:2187–2192CrossRefGoogle Scholar
  18. Pattey E, Cessna AJ, Desjardins RA, Kerr LA, Rochette P, St-Amour G, Zhu T, Headrick K (1995) Herbicides volatilization measured by the relaxed eddy-accumulation technique using two trapping media. Meteorology 76:201–220Google Scholar
  19. Peck M, Hornbuckle KC (2005) Gas-phase concentrations of current-use pesticides in Iowa. Environ Sci Technol 39:2952–2959CrossRefGoogle Scholar
  20. Raeppel C, Nief M, Fabritius M, Racault L, Appenzeller BMR, Millet M (2011) Simultaneous analysis of pesticides from different chemical classes by using a derivatisation step and GC-MS. J Chromatogr A 1218:8123–8129CrossRefGoogle Scholar
  21. Raeppel C, Fabritius M, Nief M, Appenzeller BMR, Millet M (2014) Coupling ASE, silylation and SPME-GC/MS for the analysis of current-used pesticides in atmosphere. Talanta 121:24–29CrossRefGoogle Scholar
  22. Ribes A, Carrera G, Gallego E, Roca X, Berenguer MJ, Guardino X (2007) Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system. J Chromatogr A 1140:44–55CrossRefGoogle Scholar
  23. Rodríguez-Navas C, Forteza R, Cerdà V (2012) Use of thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS) on identification of odorant emission focus by volatile organic compounds characterisation. Chemosphere 89:1426–1436CrossRefGoogle Scholar
  24. Sanusi A, Millet M, Mirabel P, Wortham H (2000) Airborne pesticides concentrations and a/γ HCH ratio in Alsace (east France) air. Sci Tot Environ 263:263–277CrossRefGoogle Scholar
  25. Scheyer A, Morville S, Mirabel P, Millet M (2007a) Pesticides analysed in rainwater in Alsace region (eastern France), comparison between urban and rural sites. Atmos Environ 41:7241–7252CrossRefGoogle Scholar
  26. Scheyer A, Morville S, Mirabel P, Millet M (2007b) Variability of atmospheric pesticide concentrations between urban and rural areas during intensive pesticide application. Atmos Environ 41:3604–3618CrossRefGoogle Scholar
  27. Schummer C, Tuduri L, Briand O, Appenzeller BMR, Millet M (2012) Application of XAD-2 resin-based passive samplers and SPME-GC-MS/MS analysis for the monitoring of spatial and temporal variations of atmospheric pesticides in Luxembourg. Environ Pollut 170:88–94CrossRefGoogle Scholar
  28. Stout DM, Mason MA (2003) The distribution of chlorpyrifos following a crack and crevice type application in the US EPA indoor air quality research house. Atmos Environ 37:5539–5549CrossRefGoogle Scholar
  29. Thompson B, Coronado GD, Grossman JE, Puschel K, Solomon CC, Islas I et al (2003) Pesticide take-home pathway among children of agricultural workers, study design, methods, and baseline findings. J Occup Environ Med 45:42–53CrossRefGoogle Scholar
  30. Van der Hoed N, Halmans MTH (1987) Sampling and thermal desorption efficiency of tube type diffusive samplers, selection and performance of adsorbents. J Am Ind Hyg Assoc 48:364–373CrossRefGoogle Scholar
  31. Van Dijk HFG, Guicherit R (1999) Atmospheric dispersion of current-use pesticides, a review of the evidence from monitoring studies. Water Air Soil Pollut 115:21–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Caroline Raeppel
    • 1
    • 2
  • Marie Fabritius
    • 1
  • Marie Nief
    • 1
  • Brice M. R. Appenzeller
    • 2
  • Olivier Briand
    • 3
  • Ludovic Tuduri
    • 4
  • Maurice Millet
    • 1
    Email author
  1. 1.Groupe de Physico-Chimie de l’Atmosphère—ICPEES (UMR 7515 CNRS Université de Strasbourg)Strasbourg CEDEXFrance
  2. 2.Laboratory of Analytical Human Biomonitoring—CRP-SantéUniversité du LuxembourgLuxembourgFrance
  3. 3.Ministère de L’agriculture, de l’alimentation, de la Pêche, de la Ruralité et de l’aménagement Du territoireParis CEDEX 07 SPFrance
  4. 4.Laboratoire de Physico- et Toxico-Chimie de l’Environnement (LPTC)–EPOCUMR-5805 CNRS—Université Bordeaux 1Périgueux CEDEXFrance

Personalised recommendations