Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 8, pp 5686–5698 | Cite as

Metallophytes for organic synthesis: towards new bio-based selective protection/deprotection procedures

  • Claire M. Grison
  • Alicia Velati
  • Vincent Escande
  • Claude Grison
Combining Phytoextraction and Ecological Catalysis: an Environmental, Ecological, Ethic and Economic Opportunity

Abstract

We propose for the first time using metal hyperaccumulating plants for the construction of a repertoire of protection and deprotection conditions in a concept of orthogonal sets. Protection of alcohol, carbonyl, carboxyl, and amino groups are considered. The ecocatalysts derived from metal-rich plants allow selective, mild, eco-friendly, and efficient protection or deprotection reactions. The selectivity is controlled by the choice of the metal, which is hyperaccumulated by the metallophyte.

Keywords

Ecocatalysis Bio-based chemistry Protecting groups Metal hyperaccumulating plants Phytoextraction 

Notes

Acknowledgments

The authors would like to thank the Agence Nationale de la Recherche (ANR 11ECOT 011 01), Centre National de la Recherche Scientifique (CNRS), Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME), and Fond Européen de Développement Régional (FEDER) program for their financial supports.

Supplementary material

11356_2014_3526_MOESM1_ESM.doc (1.6 mb)
ESM 1 (DOC 1606 kb)

References

  1. Bao K. Zhang W. Bu X. Song Z. Zhang L. Cheng M. (2008). A novel type of N-formylation and related reactions of amines via cyanides and esters as formylating agents. Chem Commun 5429–5431Google Scholar
  2. Brahmachari G, Lasakr S (2010) A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions. Tetrahedron Lett 51:2319–2322CrossRefGoogle Scholar
  3. Chandra Shekhar A, Ravi Kumar A, Sathaiah G, Luke Paul G, Madabhushi Sridhar V, Shanthan Rao P (2009) Facile N-formylation of amines using lewis acids as novel catalysts. Tetrahedron Lett 50:7099–7101CrossRefGoogle Scholar
  4. Chen BC, Bendarz MS, Zhao R, Sundee JE, Chen P, Shen Z, Skoumbourdis AP, Barrish JC (2000) A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Lett 41:5453–5456CrossRefGoogle Scholar
  5. Das B, Krishnaiah M, Balasubramanyam P, Veeranjaneyulu B, Kumar DN (2008) A remarkably simple N-formylation of anilines using polyethylene glycol. Tetrahedron Lett 49:2225–2227CrossRefGoogle Scholar
  6. Dowie IM, Earle MJ, Heaney H, Shuhaibar KF (1993) Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride. Tetrahedron 49:4015–4034CrossRefGoogle Scholar
  7. Escande V, Garoux L, Grison C et al (2013a) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B Environ. doi: 10.1016/j.apcatb.2013.04.011 Google Scholar
  8. Escande V, Olszewski TK, Grison C (2013b) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. C R Chim. doi: 10.1016/j.crci.2013.09.009 Google Scholar
  9. Escande V, Olszewski TK, Petit E, Grison C (2014) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. ChemSusChem. doi: 10.1002/cssc.201400078 Google Scholar
  10. Greene TW, Wuts PGM (1991) Protective groups in organic synthesis. Wiley, New YorkGoogle Scholar
  11. Grison C. Escande V (2012). Use of certain manganese-accumulating plants for carrying out organic chemistry reactions. WO 2014/016509 A1.Google Scholar
  12. Grison C. Escande V (2013). Use of certain metal-accumulating plants for implementing organic chemistry reactions. WO 2013150197 A1Google Scholar
  13. Grison C. Escande V. (2014). Use of particular metal accumulating plants for implementing catalyzed chemical reactions PCT/EP2014/053485Google Scholar
  14. Grison C. Escarre J. (2011). Use of plant/its part having accumulated at least one metal having zinc, nickel or copper to prepare composition having a metal catalyst for allowing the implementation of organic synthesis reactions e.g. halogenation of alcohols. WO2011064462-A1Google Scholar
  15. Grison CM, Escande V, Petit E, Garoux L, Boulanger C, Grison C (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. Rsc Adv 3:22340–22345CrossRefGoogle Scholar
  16. Gupta R, Kumar V, Gupta M, Paul S, Gupta R (2008) Silica supported zinc chloride acetylation of amines alcohols and phenols. Indian J Chem 47B:1739–1743Google Scholar
  17. Hahn FE, Wittenbecher L, Le Van D, Zabula AV (2007) Benzimidazolin-2-stannylenes with N,N′-alkyl (Me and Et) and Lewis base functional groups. Inorg Chem 46:7662–7667CrossRefGoogle Scholar
  18. Horton S. Norris P. (1997). Preparative carbohydrate chemistry (Ed. Hanessian S.), Marcel Dekker, Inc., New York Basel.Google Scholar
  19. Jones PS, Ley SV, Simpinks NS, Whittle AJ (1986) Total synthesis of the insect antifeedant ajugarin I and degradation studies of related clerodane diterpenes. Tetrahedron 42:6519–6534CrossRefGoogle Scholar
  20. Kocienski PJ (1994) In: Enders D, Noyori R, Trost BM (eds) Protecting groups, Thieme Foundations of Organic Chemistry Series. Georg Thiem Verlag Stuttgart, New YorkGoogle Scholar
  21. Losfeld G, Vidal De La Blache P, Escande V, Grison C (2012a) Zinc hyperaccumulating plants as renewable resources for the chlorination process of alcohols. Green Chem Lett Rev 5:451–456CrossRefGoogle Scholar
  22. Losfeld G, Escande V, Vidal De La Blache P, L’Huillier L, Grison C (2012b) Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for friedel-crafts alkylation and acylation. Catal Today 189:111–116CrossRefGoogle Scholar
  23. Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012c) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910CrossRefGoogle Scholar
  24. Ma’mani L, Sheykhan M, Heydari A et al (2010) Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines. Appl Catal Gen 377:64–69CrossRefGoogle Scholar
  25. Maletese M, Vergari MC, Donzello MP (2011) Zinc chloride homogeneous catalysis in the tritylation of hydroxyl- and amide-bearing molecules. Tetrahedron Lett 52:483–487CrossRefGoogle Scholar
  26. Marsili R (2002) Flavor, fragrance, and odor analysis. Marcel Dekker, New YorkGoogle Scholar
  27. Pascal R, Sola R (1998) Preservation of the protective group under alkaline conditions by using CaCl2. Applications in peptide synthesis. Tetrahedron Lett 39:5031–5034CrossRefGoogle Scholar
  28. Saladino R, Crestini C, Neri V et al (2006) Origin of informational polymers: the concurrent roles of formamide and phosphates. ChemBioChem 7:1707–1714CrossRefGoogle Scholar
  29. Shekar AC, Kumar AR, Sathaiah G, Paul L, Sridhar M, Rao PS (2009) Facile N-formylation of amines using Lewis acids as novel catalysts. Tetrahedron Lett 50:7099–7101CrossRefGoogle Scholar
  30. Suchý M, Elmehriki AAH, Hudson RHE (2011) A remarkably simple protocol for the N-formylation of amino acid esters and primary amines. Org Lett 13:3952–3955CrossRefGoogle Scholar
  31. Tumma H, Nagaraju N, Reddy KV (2009) A facile method for the N-formylation of primary and secondary amines by liquid phase oxidation of methanol in the presence of hydrogen peroxide over basic copper hydroxyl salts. J Mol Catal Chem 310:121–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claire M. Grison
    • 1
  • Alicia Velati
    • 2
  • Vincent Escande
    • 2
    • 3
  • Claude Grison
    • 2
  1. 1.Institut de Chimie Moléculaire et des Matériaux d’OrsayUniversité Paris SudOrsay CedexFrance
  2. 2.Laboratory of Bioinspired Chemistry and Ecological Innovations FRE CNRS UM2 Stratoz 3673Cap AlphaClapiersFrance
  3. 3.ADEMEAngersFrance

Personalised recommendations