Environmental Science and Pollution Research

, Volume 23, Issue 6, pp 4964–4977 | Cite as

Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations

  • Axelle Chiffre
  • Christelle Clérandeau
  • Charline Dwoinikoff
  • Florane Le Bihanic
  • Hélène Budzinski
  • Florence Geret
  • Jérôme CachotEmail author
Pharmaceuticals in the aquatic environment


Psychiatric pharmaceuticals, such as anxiolytics, sedatives, hypnotics and antidepressors, are among the most prescribed active substances in the world. The occurrence of these compounds in the environment, as well as the adverse effects they can have on non-target organisms, justifies the growing concern about these emerging environmental pollutants. This study aims to analyse the effects of six psychotropic drugs, valproate, cyamemazine, citalopram, sertraline, fluoxetine and oxazepam, on the survival and locomotion of Japanese medaka Oryzias latipes larvae. Newly hatched Japanese medaka were exposed to individual compounds for 72 h, at concentrations ranging from 10 μg L−1 to 10 mg L−1. Lethal concentrations 50 % (LC50) were estimated at 840, 841 and 9,136 μg L−1 for fluoxetine, sertraline and citalopram, respectively, while other compounds did not induce any significant increase in mortality. Analysis of the swimming behaviour of larvae, including total distance moved, mobility and location, provided an estimated lowest observed effect concentration (LOEC) of 10 μg L−1 for citalopram and oxazepam, 12.2 μg L−1 for cyamemazine, 100 μg L−1 for fluoxetine, 1,000 μg L−1 for sertraline and >10,000 μg L−1 for valproate. Realistic environmental mixture of the six psychotropic compounds induced disruption of larval locomotor behaviour at concentrations about 10- to 100-fold greater than environmental concentrations.


Psychotropics Locomotor activity Japanese medaka Video tracking Environmental risk evaluation 



Days postfertilisation


Effective concentration


Lethal concentrations 50 %


Egg rearing solution


Lowest observed effect concentration


No observed effect concentration


Predicted no effect concentration


Risk quotient



This work was funded by the Aquitaine region (Medic’eau project) and the French Agency for Food, Environmental and Occupational Health and Safety ANSES (Psycheau project). We would like to thank Mr James Emery for his help in editing this paper.

Supplementary material

11356_2014_3477_MOESM1_ESM.docx (62 kb)
ESM 1 (DOCX 61 kb)


  1. Andrew SK, James DS, Geoffrey TG, Timothy CAM, Colin H (2004) A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res 38:3993–4001CrossRefGoogle Scholar
  2. Baker DR, Kasprzyk-Hordern B (2011) Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 12:1620–1631CrossRefGoogle Scholar
  3. Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol Environ Saf 79:272–282CrossRefGoogle Scholar
  4. Benyamina A, Arbus C, Nuss P, Garay RP, Neliat G, Hameg A (2008) Affinity of cyamemazine metabolites for serotonin, histamine and dopamine receptor subtypes. Eur J Pharmacol 578:142–147CrossRefGoogle Scholar
  5. Bound JP, Kitsou K, Voulvoulis N (2006) Household disposal of pharmaceuticals and perception of risk to the environment. Environ Toxicol Pharmacol 21:301–307CrossRefGoogle Scholar
  6. Bourin M, Dhonnchadha B, Colombel MC, Dib M, Hascoët M (2001) Cyamemazine as an anxiolytic drug on the elevated plus maze and light/dark paradigm in mice. Behav Brain Res 124:87–95CrossRefGoogle Scholar
  7. Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339:814–815CrossRefGoogle Scholar
  8. Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003a) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183CrossRefGoogle Scholar
  9. Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, Slattery M, La Point TW, Huggett DB (2003b) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142CrossRefGoogle Scholar
  10. Brooks BW, Chambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, Lewis RJ (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469CrossRefGoogle Scholar
  11. Brooks BW, Valenti TW, Perez-Hurtado P, Chambliss CK (2009) Aquatic toxicity of sertraline to Pimephales promelas at environmentally relevant surface water pH. Environ Toxicol Chem 28:2685–2694CrossRefGoogle Scholar
  12. Champagne DL, Hoefnagels CCM, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342CrossRefGoogle Scholar
  13. Calisto V, Esteves V (2009) Psychiatric pharmaceuticals in the environment. Chemosphere 77:1257–1274CrossRefGoogle Scholar
  14. Calleja MC, Persoone G, Geladi P (1994) Comparative acute toxicity of the first 50 multicenter evaluation of in-vitro cytotoxicity chemicals to aquatic non-vertebrates. Arch Environ Contam Toxicol 26:69–78CrossRefGoogle Scholar
  15. Campo-Soria C, Chang Y, Weiss DS (2006) Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol 148:984–990CrossRefGoogle Scholar
  16. Cardwell JR, Sorensen PW, Van der Kraak GJ, Liley N (1996) Effect of dominance status on sex hormone levels in laboratory and wild-spawning male trout. Gen Comp Endocrinol 101(3):333–341CrossRefGoogle Scholar
  17. Conley JM, Symes SJ, Kindelberger SA, Richards SM (2008) Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A 1185:206–215CrossRefGoogle Scholar
  18. Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S (2012) Development exposure to valproate and ethanol alters locomotor activity and retino–tectal area in zebrafish embryos. Reprod Toxicol 33:165–173CrossRefGoogle Scholar
  19. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  20. EC (2010) Directive 2010/63/EC of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Communities 273:33–79Google Scholar
  21. Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp 20:e923Google Scholar
  22. Farwell A, Nero V, Croft M, Bal P, Dixon DG (2006) Modified Japanese medaka embryo-larval bioassay for rapid determination of developmental abnormalities. Arch Environ Contam Toxicol 51:600–607CrossRefGoogle Scholar
  23. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  24. Fong PP, Molnar N (2008) Norfluoxetine induces spawning and parturition in estuarine and freshwater bivalves. Bull Environ Contam Toxicol 81:535–538CrossRefGoogle Scholar
  25. Fong PP (1998) Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. Biol Bull 194:143–149CrossRefGoogle Scholar
  26. González Alonso S, Catalá M, Maroto RR, Gil JL, de Miguel AG, Valcárcel Y (2010) Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). Environ Int 36:195–201CrossRefGoogle Scholar
  27. Gonzalez-Doncel M, de la Pena E, Barrueco C, Hinton DE (2003) Stage sensitivity of medaka (Oryzias latipes) eggs and embryos to permethrin. Aquat Toxicol 62:255–268CrossRefGoogle Scholar
  28. Hameg A, Bayle F, Nuss P, Dupuis P, Garay RP, Dib M (2003) Affinity of cyamemazine, an anxiolytic antipsychotic drug, for human recombinant dopamine vs. serotonin receptor subtypes. Biochem Pharmacol 65:435–440CrossRefGoogle Scholar
  29. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189CrossRefGoogle Scholar
  30. Henry TB, Kwon JW, Armbrust KL, Black MC (2004) Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ Toxicol Chem 23:2229–2233CrossRefGoogle Scholar
  31. Hignite C, Azarnoff D (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20:337–342CrossRefGoogle Scholar
  32. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118CrossRefGoogle Scholar
  33. Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90CrossRefGoogle Scholar
  34. Irons TD, Kelly PE, Hunter DL, MacPhail RC, Padilla S (2013) Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol Biochem Behav 103(4):792–813CrossRefGoogle Scholar
  35. Kim JW, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34(2):227–232CrossRefGoogle Scholar
  36. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  37. Lajeunesse A, Gagnon C, Sauve S (2008) Determination of basic antidepressants and their n-desmethylmetabolites in rawsewage and wastewater using solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal Chem 8:5325–5333CrossRefGoogle Scholar
  38. Le Bihanic F, Clérandeau C, Menach K, Morin B, Budzinski H, Cousin X, Cachot J (2014) Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka. Environ Sci Pollut Res in press.Google Scholar
  39. Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9:13–19CrossRefGoogle Scholar
  40. Lockwood B, Bjerke S, Kobayashi K, Guo S (2004) Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77:647–654CrossRefGoogle Scholar
  41. MacPhail R (2010) Evaluating the behavioral impact of toxicants in larval zebrafish. Neurotoxicol Teratol 32(4):502CrossRefGoogle Scholar
  42. Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22:2881–2889CrossRefGoogle Scholar
  43. Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere 93(10):2217–2223CrossRefGoogle Scholar
  44. Nakamura Y, Yamamoto H, Sekizawa J, Kondo T, Hirai N, Tatarazako N (2008) The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere 70:865–873CrossRefGoogle Scholar
  45. Peitsaro N, Kaslin J, Anichtchik OV, Panula P (2003) Modulation of the histaminergic system and behaviour by alphafluoromethylhistidine in zebrafish. J Neurochem 86(2):432–441CrossRefGoogle Scholar
  46. Richards SM, Cole SE (2006) A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. Ecotoxicology 15(8):647–656CrossRefGoogle Scholar
  47. Richendrfer H, Pelkowskia SD, Colwill RM, Creton R (2012) On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res 228:99–106CrossRefGoogle Scholar
  48. Schnörr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228:367–374CrossRefGoogle Scholar
  49. Schultz MM, Furlong ET (2008) Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. Anal Chem 80:1756–1762CrossRefGoogle Scholar
  50. Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61(1):59–64CrossRefGoogle Scholar
  51. Stewart AM, Cachat J, Gaikwad S, Robinson KSL, Gebhardt M, Kalueff AV (2013) Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem Int 62:893–902CrossRefGoogle Scholar
  52. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31(4):959–962CrossRefGoogle Scholar
  53. Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 61(12):411–441CrossRefGoogle Scholar
  54. Wu M, Khan IA, Dasmahapatra AK (2012) Valproate-induced teratogenesis in Japanese rice fish (Oryzias latipes) embryogenesis. Comp Biochem Phys C 155(3):528–537Google Scholar
  55. Zellner D, Padnos B, Hunter DL, Macphail RC, Padilla S (2011) Rearing conditions differentially affect the locomotor behavior of larval zebrafish, but not their response to valproate-induced developmental neurotoxicity. Neurotoxicol Teratol 33(6):674–679CrossRefGoogle Scholar
  56. Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manag 133:378–387CrossRefGoogle Scholar
  57. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355(9217):1789–1790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Axelle Chiffre
    • 1
    • 3
  • Christelle Clérandeau
    • 1
  • Charline Dwoinikoff
    • 1
  • Florane Le Bihanic
    • 1
  • Hélène Budzinski
    • 1
  • Florence Geret
    • 2
  • Jérôme Cachot
    • 1
    Email author
  1. 1.Laboratoire EPOC, UMR CNRS 5805Université de BordeauxTalence CedexFrance
  2. 2.Laboratoire GEODE, UMR CNRS 5602Centre Universitaire ChampollionAlbi Cedex 9France
  3. 3.Chrono-Environment Department, UMR 6249 UFC/CNRS usc INRAUniversity of Franche ComtéBesançonFrance

Personalised recommendations