Environmental Science and Pollution Research

, Volume 22, Issue 21, pp 16262–16276 | Cite as

Zebrafish as a model to study the role of DNA methylation in environmental toxicology

  • Jorke H. Kamstra
  • Peter Aleström
  • Jan M. Kooter
  • Juliette Legler
Danio rerio as a Model in Aquatic Toxicology and Sediment Research


Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.


Environmental epigenetics Zebra fish 5-Methylcytosine 5-Hydroxymethylcytosine Environmental toxicology Development Transgenerational effects 


  1. Aanes H, Winata CL, Lin CH et al (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21:1328–1338. doi:10.1101/gr.116012.110 CrossRefGoogle Scholar
  2. Abdouni H, King JJ, Suliman M et al (2013) Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucleic Acids Res 41:5457–5468. doi:10.1093/nar/gkt212 CrossRefGoogle Scholar
  3. Almeida RD, Loose M, Sottile V et al (2012) 5-Hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics 7:383–389. doi:10.4161/epi.19375 CrossRefGoogle Scholar
  4. Andersen IS, Ostrup O, Lindeman LC et al (2012a) Epigenetic complexity during the zebrafish mid-blastula transition. Biochem Biophys Res Commun 417:1139–1144. doi:10.1016/j.bbrc.2011.12.077 CrossRefGoogle Scholar
  5. Andersen IS, Reiner AH, Aanes H et al (2012b) Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol 13:R65. doi:10.1186/gb-2012-13-7-r65 CrossRefGoogle Scholar
  6. Baker TR, Peterson RE, Heideman W (2014) Using zebrafish as a model system for studying the transgenerational effects of dioxin. Toxicol Sci 138:403–411. doi:10.1093/toxsci/kfu006 CrossRefGoogle Scholar
  7. Bastos Sales L, Kamstra JH, Cenijn PH et al (2013) Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation. Toxicol Vitr 27:1634–1643. doi:10.1016/j.tiv.2013.04.005 CrossRefGoogle Scholar
  8. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11:726–734. doi:10.1038/nrc3130 CrossRefGoogle Scholar
  9. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398. doi:10.1038/nature05913 CrossRefGoogle Scholar
  10. Bogdanović O, Veenstra GJC (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118:549–565. doi:10.1007/s00412-009-0221-9 CrossRefGoogle Scholar
  11. Bollati V, Baccarelli A (2010) Environmental epigenetics. Hered (Edinb) 105:105–112. doi:10.1038/hdy.2010.2 CrossRefGoogle Scholar
  12. Ceccaldi A, Rajavelu A, Champion C et al (2011) C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Chembiochem 12:1337–1345. doi:10.1002/cbic.201100130 CrossRefGoogle Scholar
  13. Ceccaldi A, Rajavelu A, Ragozin S et al (2013) Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol 8:543–548. doi:10.1021/cb300565z CrossRefGoogle Scholar
  14. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82. doi:10.1093/nar/gkr218 CrossRefGoogle Scholar
  15. Chen H, Li S, Liu J et al (2004) Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis 25:1779–1786. doi:10.1093/carcin/bgh161 CrossRefGoogle Scholar
  16. Corley-Smith GE, Lim CJ, Brandhorst BP (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142:1265–1276Google Scholar
  17. Corrales J, Fang X, Thornton C et al (2014a) Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol 163:37–46. doi:10.1016/j.cbpc.2014.02.005 CrossRefGoogle Scholar
  18. Corrales J, Thornton C, White M, Willett KL (2014b) Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquat Toxicol 148:16–26. doi:10.1016/j.aquatox.2013.12.028 CrossRefGoogle Scholar
  19. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022. doi:10.1101/gad.2037511 CrossRefGoogle Scholar
  20. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061. doi:10.1073/pnas.0703739104 CrossRefGoogle Scholar
  21. Ensembl (2013) Mouse, zebrafish and human assembly and gene annotation. http://www.ensembl.org/. Accessed 28 Aug 2013
  22. Fang X, Thornton C, Scheffler BE, Willett KL (2013) Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environ Toxicol Pharmacol 36:40–50. doi:10.1016/j.etap.2013.02.014 CrossRefGoogle Scholar
  23. Feng S, Cokus SJ, Zhang X et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694. doi:10.1073/pnas.1002720107 CrossRefGoogle Scholar
  24. Fukata H, Mori C (2004) Epigenetic alteration by the chemical substances, food and environmental factors. Reprod Med Biol 3:115–121CrossRefGoogle Scholar
  25. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282CrossRefGoogle Scholar
  26. Ge L, Zhang R-P, Wan F et al (2014) TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol Cell Biol 34:989–1002. doi:10.1128/MCB.01061-13 CrossRefGoogle Scholar
  27. Globisch D, Münzel M, Müller M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367. doi:10.1371/journal.pone.0015367 CrossRefGoogle Scholar
  28. Gokul G, Khosla S (2013) DNA methylation and cancer. In: Kundu TK (ed) Epigenetics: development and disease. Springer, Dordrecht, pp 597–625CrossRefGoogle Scholar
  29. Greally JM, Jacobs MN (2013) In vitro and in vivo testing methods of epigenomic endpoints for evaluating endocrine disruptors. ALTEX 30:445–471CrossRefGoogle Scholar
  30. Gu H, Smith ZD, Bock C et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481. doi:10.1038/nprot.2010.190 CrossRefGoogle Scholar
  31. Hamdi M, Yoshinaga M, Packianathan C et al (2012) Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio. Toxicol Appl Pharmacol 262:185–193. doi:10.1016/j.taap.2012.04.035 CrossRefGoogle Scholar
  32. Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587. doi:10.1007/s00018-004-4201-1 CrossRefGoogle Scholar
  33. Hernández HG, Tse MY, Pang SC et al (2013) Optimizing methodologies for PCR-based DNA methylation analysis. Biotechniques 55:181–197. doi:10.2144/000114087 Google Scholar
  34. Houwing S, Kamminga LM, Berezikov E et al (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129:69–82. doi:10.1016/j.cell.2007.03.026 CrossRefGoogle Scholar
  35. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229. doi:10.1038/nbt.2501 CrossRefGoogle Scholar
  36. Jiang L, Zhang J, Wang J-J et al (2013) Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153:773–784. doi:10.1016/j.cell.2013.04.041 CrossRefGoogle Scholar
  37. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262. doi:10.1038/nrg2045 CrossRefGoogle Scholar
  38. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. doi:10.1038/nrg3230 CrossRefGoogle Scholar
  39. Kamstra JH, Hruba E, Blumberg B et al (2014) Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47. Environ Sci Technol. doi:10.1021/es405524b Google Scholar
  40. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310. doi:10.1002/aja.1002030302 CrossRefGoogle Scholar
  41. Kirchner S, Kieu T, Chow C et al (2010) Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol 24:526–539. doi:10.1210/me.2009-0261 CrossRefGoogle Scholar
  42. Kobayashi H, Sakurai T, Imai M et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440. doi:10.1371/journal.pgen.1002440 CrossRefGoogle Scholar
  43. Landsverk ML, Weiser DC, Hannibal MC, Kimelman D (2010) Alternative splicing of sept9a and sept9b in zebrafish produces multiple mRNA transcripts expressed throughout development. PLoS One 5:e10712. doi:10.1371/journal.pone.0010712 CrossRefGoogle Scholar
  44. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. doi:10.1038/nrg2719 CrossRefGoogle Scholar
  45. Li W, Liu M (2011) Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011:870726. doi:10.4061/2011/870726 CrossRefGoogle Scholar
  46. Li S, Hansman R, Newbold R et al (2003) Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog 38:78–84. doi:10.1002/mc.10147 CrossRefGoogle Scholar
  47. Li D, Lu C, Wang J et al (2009) Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol 91:229–237. doi:10.1016/j.aquatox.2008.11.007 CrossRefGoogle Scholar
  48. Lindeman LC, Reiner AH, Mathavan S et al (2010a) Tiling histone H3 lysine 4 and 27 methylation in zebrafish using high-density microarrays. PLoS One 5:e15651. doi:10.1371/journal.pone.0015651 CrossRefGoogle Scholar
  49. Lindeman LC, Winata CL, Aanes H et al (2010b) Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. Int J Dev Biol 54:803–813. doi:10.1387/ijdb.103081ll CrossRefGoogle Scholar
  50. Lindeman LC, Andersen IS, Reiner AH et al (2011) Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev Cell 21:993–1004. doi:10.1016/j.devcel.2011.10.008 CrossRefGoogle Scholar
  51. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322. doi:10.1038/nature08514 CrossRefGoogle Scholar
  52. Long HK, Sims D, Heger A et al (2013) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife 2:e00348. doi:10.7554/eLife.00348 CrossRefGoogle Scholar
  53. MacKay AB, Mhanni AA, McGowan RA, Krone PH (2007) Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 50:778–785. doi:10.1139/g07-055 CrossRefGoogle Scholar
  54. Macleod D, Clark VH, Bird A (1999) Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nat Genet 23:139–140. doi:10.1038/13767 CrossRefGoogle Scholar
  55. Martin CC, Laforest L, Akimenko MA, Ekker M (1999) A role for DNA methylation in gastrulation and somite patterning. Dev Biol 206:189–205. doi:10.1006/dbio.1998.9105 CrossRefGoogle Scholar
  56. Mathavan S, Lee SGP, Mak A et al (2005) Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1:260–276. doi:10.1371/journal.pgen.0010029 CrossRefGoogle Scholar
  57. McGee SP, Cooper EM, Stapleton HM, Volz DC (2012) Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure. Environ Health Perspect 120:1585–1591. doi:10.1289/ehp.1205316 CrossRefGoogle Scholar
  58. Mellén M, Ayata P, Dewell S et al (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430. doi:10.1016/j.cell.2012.11.022 CrossRefGoogle Scholar
  59. Mhanni AA, McGowan RA (2004) Global changes in genomic methylation levels during early development of the zebrafish embryo. Dev Genes Evol 214:412–417. doi:10.1007/s00427-004-0418-0 CrossRefGoogle Scholar
  60. Mhanni AA, Yoder JA, Dubesky C, McGowan RA (2001) Cloning and sequence analysis of a zebrafish cDNA encoding DNA (cytosine-5)-methyltransferase-1. Genesis 30:213–219. doi:10.1002/gene.1067 CrossRefGoogle Scholar
  61. Nestor CE, Ottaviano R, Reddington J et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477. doi:10.1101/gr.126417.111 CrossRefGoogle Scholar
  62. Olsvik PA, Williams TD, Tung H-S et al (2014) Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comp Biochem Physiol C Toxicol Pharmacol 165C:17–27. doi:10.1016/j.cbpc.2014.05.004 CrossRefGoogle Scholar
  63. Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356. doi:10.1038/nrm3589 CrossRefGoogle Scholar
  64. Pfeifer GP, Kadam S, Jin S-G (2013) 5-Hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 6:10. doi:10.1186/1756-8935-6-10 CrossRefGoogle Scholar
  65. Pikulkaew S, Benato F, Celeghin A et al (2011) The knockdown of maternal glucocorticoid receptor mRNA alters embryo development in zebrafish. Dev Dyn 240:874–889. doi:10.1002/dvdy.22586 CrossRefGoogle Scholar
  66. Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153:759–772. doi:10.1016/j.cell.2013.04.030 CrossRefGoogle Scholar
  67. Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10:192–206. doi:10.1038/nrm2640 CrossRefGoogle Scholar
  68. Rai K, Nadauld LD, Chidester S et al (2006) Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 26:7077–7085. doi:10.1128/MCB.00312-06 CrossRefGoogle Scholar
  69. Rai K, Huggins IJ, James SR et al (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212. doi:10.1016/j.cell.2008.11.042 CrossRefGoogle Scholar
  70. Rai K, Jafri IF, Chidester S et al (2010) Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem 285:4110–4121. doi:10.1074/jbc.M109.073676 CrossRefGoogle Scholar
  71. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994. doi:10.1038/nrm2298 CrossRefGoogle Scholar
  72. Ruzov A, Tsenkina Y, Serio A et al (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21:1332–1342. doi:10.1038/cr.2011.113 CrossRefGoogle Scholar
  73. Schier AF (2007) The maternal-zygotic transition: death and birth of RNAs. Science 316:406–407. doi:10.1126/science.1140693 CrossRefGoogle Scholar
  74. Seritrakul P, Gross JM (2014) Expression of the de novo DNA methyltransferases (dnmt3 - dnmt8) during zebrafish lens development. Dev Dyn 243:350–356. doi:10.1002/dvdy.24077 CrossRefGoogle Scholar
  75. Shimoda N, Yamakoshi K, Miyake A, Takeda H (2005) Identification of a gene required for de novo DNA methylation of the zebrafish no tail gene. Dev Dyn 233:1509–1516. doi:10.1002/dvdy.20455 CrossRefGoogle Scholar
  76. Skinner MK (2013) Environmental epigenetics and transgenerational epigenetic inheritance. In: Jirtle RL, Tyson FL (eds) Environmental epigenomics in health disease. Springer, Berlin, pp 245–256CrossRefGoogle Scholar
  77. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42. doi:10.1016/j.tig.2011.09.004 CrossRefGoogle Scholar
  78. Smith THL, Collins TM, McGowan RA (2011) Expression of the dnmt3 genes in zebrafish development: similarity to Dnmt3a and Dnmt3b. Dev Genes Evol 220:347–353. doi:10.1007/s00427-010-0347-z CrossRefGoogle Scholar
  79. Smith ZD, Chan MM, Mikkelsen TS et al (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344. doi:10.1038/nature10960 CrossRefGoogle Scholar
  80. Strähle U, Scholz S, Geisler R et al (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132. doi:10.1016/j.reprotox.2011.06.121 CrossRefGoogle Scholar
  81. Strömqvist M, Tooke N, Brunström B (2010) DNA methylation levels in the 5′ flanking region of the vitellogenin I gene in liver and brain of adult zebrafish (Danio rerio)—sex and tissue differences and effects of 17alpha-ethinylestradiol exposure. Aquat Toxicol 98:275–281. doi:10.1016/j.aquatox.2010.02.023 CrossRefGoogle Scholar
  82. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745. doi:10.1073/pnas.052410099 CrossRefGoogle Scholar
  83. Takayama K, Shimoda N, Takanaga S et al (2014) Expression patterns of dnmt3aa, dnmt3ab, and dnmt4 during development and fin regeneration in zebrafish. Gene Expr Patterns 14:105–110. doi:10.1016/j.gep.2014.01.005 CrossRefGoogle Scholar
  84. Tittle RK, Sze R, Ng A et al (2011) Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 350:50–63. doi:10.1016/j.ydbio.2010.11.009 CrossRefGoogle Scholar
  85. Tucker KL (2001) Methylated cytosine and the brain: a new base for neuroscience. Neuron 30:649–652CrossRefGoogle Scholar
  86. Vandegehuchte MB, Janssen CR (2014) Epigenetics in an ecotoxicological context. Mutat Res Genet Toxicol Environ Mutagen 764–765:36–45. doi:10.1016/j.mrgentox.2013.08.008 CrossRefGoogle Scholar
  87. Vastenhouw NL, Schier AF (2012) Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 24:374–386. doi:10.1016/j.ceb.2012.03.009 CrossRefGoogle Scholar
  88. Wang J, Wu Z, Li D et al (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301. doi:10.1089/ars.2011.4381 CrossRefGoogle Scholar
  89. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918. doi:10.1016/j.cell.2013.04.025 CrossRefGoogle Scholar
  90. Wei C, Salichos L, Wittgrove CM et al (2012) Transcriptome-wide analysis of small RNA expression in early zebrafish development. RNA 18:915–929. doi:10.1261/rna.029090.111 CrossRefGoogle Scholar
  91. Weisenberger DJ, Romano LJ (1999) Cytosine methylation in a CpG sequence leads to enhanced reactivity with benzo[a]pyrene diol epoxide that correlates with a conformational change. J Biol Chem 274:23948–23955CrossRefGoogle Scholar
  92. Williams TD, Mirbahai L, Chipman JK (2014) The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 13:157–171. doi:10.1093/bfgp/elt053 CrossRefGoogle Scholar
  93. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620. doi:10.1038/nrm2950 CrossRefGoogle Scholar
  94. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68. doi:10.1016/j.cell.2013.12.019 CrossRefGoogle Scholar
  95. Wu Q, Ohsako S, Ishimura R et al (2004) Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod 70:1790–1797. doi:10.1095/biolreprod.103.025387 CrossRefGoogle Scholar
  96. Wu H, Caffo B, Jaffee HA et al (2010) Redefining CpG islands using hidden Markov models. Biostatistics 11:499–514. doi:10.1093/biostatistics/kxq005 CrossRefGoogle Scholar
  97. Wu S-F, Zhang H, Hammoud SS et al (2011) DNA methylation profiling in zebrafish. Methods Cell Biol 104:327–339. doi:10.1016/B978-0-12-374814-0.00018-5 CrossRefGoogle Scholar
  98. Yamakoshi K, Shimoda N (2003) De novo DNA methylation at the CpG island of the zebrafish no tail gene. Genesis 37:195–202. doi:10.1002/gene.10245 CrossRefGoogle Scholar
  99. Yildirim O, Li R, Hung J-H et al (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147:1498–1510. doi:10.1016/j.cell.2011.11.054 CrossRefGoogle Scholar
  100. Yokomine T, Hata K, Tsudzuki M, Sasaki H (2006) Evolution of the vertebrate DNMT3 gene family: a possible link between existence of DNMT3L and genomic imprinting. Cytogenet Genome Res 113:75–80. doi:10.1159/000090817 CrossRefGoogle Scholar
  101. Zhang X, Wallace AD, Du P et al (2012) Genome-wide study of DNA methylation alterations in response to diazinon exposure in vitro. Environ Toxicol Pharmacol 34:959–968. doi:10.1016/j.etap.2012.07.012 CrossRefGoogle Scholar
  102. Zhao CQ, Young MR, Diwan BA et al (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94:10907–10912CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jorke H. Kamstra
    • 1
  • Peter Aleström
    • 2
  • Jan M. Kooter
    • 3
  • Juliette Legler
    • 1
  1. 1.Institute for Environmental StudiesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Science and Aquatic MedicineNorwegian University of Life SciencesOsloNorway
  3. 3.Department of Molecular Cell Biology, Section GeneticsVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations