Environmental Science and Pollution Research

, Volume 22, Issue 2, pp 1431–1443 | Cite as

Evolution of dissolved organic matter during abiotic oxidation of coal tar—comparison with contaminated soils under natural attenuation

  • Ogier Hanser
  • Coralie Biache
  • Marine Boulangé
  • Stéphane Parant
  • Catherine Lorgeoux
  • David Billet
  • Raymond Michels
  • Pierre Faure
Research Article


In former coal transformation plants (coking and gas ones), the major organic contamination of soils is coal tar, mainly composed of polycyclic aromatic compounds (PACs). Air oxidation of a fresh coal tar was chosen to simulate the abiotic natural attenuation impact on PAC-contaminated soils. Water-leaching experiments were subsequently performed on fresh and oxidized coal tars to study the influence of oxidation on dissolved organic matter (DOM) quality and quantity. The characterization of the DOM was performed using a combination of molecular and spectroscopic techniques (high-performance liquid chromatography–size-exclusion chromatography (HPLC-SEC), 3D fluorescence, and gas chromatography coupled with mass spectrometry (GC–MS)) and compared with the DOM from contaminated soils sampled on the field exposed to natural attenuation for several decades. An increase in the oxygenated polycyclic aromatic compound concentrations was observed with abiotic oxidation both in the coal tar and the associated DOM. Polycyclic aromatic hydrocarbon concentrations in the leachates exceeded pure water solubility limits, suggesting that co-solvation with other soluble organic compounds occurred. Furthermore, emission excitation matrix analysis combined with synchronous fluorescence spectra interpretation and size-exclusion chromatography suggests that oxidation induced condensation reactions which were responsible for the formation of higher-molecular weight compounds and potentially mobilized by water. Thus, the current composition of the DOM in aged soils may at least partly result from (1) a depletion in lower-molecular weight compounds of the initial contamination stock and (2) an oxidative condensation leading to the formation of a higher-molecular weight fraction. Abiotic oxidation and water leaching may therefore be a significant combination contributing to the evolution of coal tar-contaminated soils under natural attenuation.


Dissolved organic matter (DOM) Polycyclic aromatic compounds (PACs) Coal tar Polluted soils Leaching Abiotic oxidation Natural attenuation 



The authors thank the French Ministère de l’Enseignement Supérieur et de la Recherche for the financial support given to this study. They also thank the Groupement d’Intérêt Scientifique pour les Friches Industrielles (GISFI) for providing the coking plant soil samples. Finally, they thank J. Rochester for her welcomed review of the quality of the English.


  1. Benhabib K, Faure P, Sardin M, Simonnot MO (2010) Characteristics of a solid coal tar sampled from a contaminated soil and of the organics transferred into water. Fuel 89:352–359. doi: 10.1016/j.fuel.2009.06.009 CrossRefGoogle Scholar
  2. Biache C, Mansuy-Huault L, Faure P, Munier-Lamy C, Leyval C (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability. Environ Pollut 156:671–677. doi: 10.1016/j.envpol.2008.06.020 CrossRefGoogle Scholar
  3. Biache C, Ghislain T, Faure P, Mansuy-Huault L (2011) Low temperature oxidation of a coking plant soil organic matter and its major constituents: an experimental approach to simulate a long term evolution. J Hazard Mater 188:221–230. doi: 10.1016/j.jhazmat.2011.01.102 CrossRefGoogle Scholar
  4. Biache C, Faure P, Mansuy-Huault L, Cébron A, Beguiristain T, Leyval C (2013) Biodegradation of the organic matter in a coking plant soil and its main constituents. Org Geochem 56:10–18. doi: 10.1016/j.orggeochem.2012.12.002 CrossRefGoogle Scholar
  5. Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280CrossRefGoogle Scholar
  6. Bispo A, Jourdain MJ, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30:947–952. doi: 10.1016/s0146-6380(99)00078-9 CrossRefGoogle Scholar
  7. Buczynska AJ, Geypens B, Van Grieken R, De Wael K (2013) Stable carbon isotopic ratio measurement of polycyclic aromatic hydrocarbons as a tool for source identification and apportionment—a review of analytical methodologies. Talanta 105:435–450. doi: 10.1016/j.talanta.2012.10.075 CrossRefGoogle Scholar
  8. Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37:1477–1488. doi: 10.1016/j.oeggeochem.2006.06.022 CrossRefGoogle Scholar
  9. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346. doi: 10.1016/0304-4203(95)00062-3 CrossRefGoogle Scholar
  10. Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107:402–418. doi: 10.1021/cr050350
  11. Eom IC, Rast C, Veber AM, Vasseur P (2007) Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol Environ Saf 67:190–205CrossRefGoogle Scholar
  12. Faure P, Mansuy-Huault L, Su X (2007) Alkanes and hopanes for pollution source apportionment in coking plant soils. Environ Chem Lett 5:41–46. doi: 10.1007/s10311-006-0066-x CrossRefGoogle Scholar
  13. Fernandez-Gomez WD, Quintana HAR, Daza CE, Lizcano FAR (2014) The effects of environmental aging on Colombian asphalts Fuel 115:321–328. doi: 10.1016/j.fuel.2013.07.009
  14. Ghislain T, Faure P, Biache C, Michels R (2010) Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils. Environ Sci Technol 44:8547–8552. doi: 10.1021/es102832r CrossRefGoogle Scholar
  15. Haeseler F, Blanchet D, Druelle V, Werner P, Vandecasteele J-P (1999) Analytical characterization of contaminated soils from former manufactured gas plants. Environ Sci Technol 33:825–830. doi: 10.1021/es9805829 CrossRefGoogle Scholar
  16. Huber SG, Wunderlich S, Scholer HF, Williams J (2010) Natural abiotic formation of furans in soil. Environ Sci Technol 44:5799–5804. doi: 10.1021/es100704g CrossRefGoogle Scholar
  17. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719. doi: 10.1016/j.orggeochem.2009.03.002 CrossRefGoogle Scholar
  18. Huguet A et al (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org Geochem 41:595–610. doi: 10.1016/j.orggeochem.2010.02.006 CrossRefGoogle Scholar
  19. Hur J, Hwang SJ, Shin JK (2008) Using synchronous fluorescence technique as a water quality monitoring tool for an urban river. Water Air Soil Pollut 191:231–243. doi: 10.1007/s11270-008-9620-4 CrossRefGoogle Scholar
  20. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo a pyrene. Int Biodeterior Biodegrad 45:57–88. doi: 10.1016/s0964-8305(00)00052-4 CrossRefGoogle Scholar
  21. Keith L, Telliard W (1979) ES&T special report: priority pollutants: I—a perspective view. Environ Sci Technol 13:416–423. doi: 10.1021/es60152a601 CrossRefGoogle Scholar
  22. Kister J, Dou H (1986) Global characterization of the chemical constituents of coal by X scanner, UV fluorescence spectroscopy and FTIR spectroscopy. Fuel Process Technol 12:19–29. doi: 10.1016/0378-3820(86)90064-0 CrossRefGoogle Scholar
  23. Larionova AA, Zolotareva BN, Kolyagin YG, Kudeyarov VN (2013) Transformation of the organic matter in an agrogray soil and an agrochernozem in the course of the humification of corn biomass. Eurasian Soil Sci 46:854–861. doi: 10.1134/s1064229313060045 CrossRefGoogle Scholar
  24. Laurent F, Cebron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86:659–664. doi: 10.1016/j.chemosphere.2011.11.018 CrossRefGoogle Scholar
  25. Lemaire J, Laurent F, Leyval C, Schwartz C, Bues M, Simonnot MO (2013) PAH oxidation in aged and spiked soils investigated by column experiments. Chemosphere 91:406–414. doi: 10.1016/j.chemosphere.2012.12.003 CrossRefGoogle Scholar
  26. Liao X, Ma D, Yan X, Yang L (2013) Distribution pattern of polycyclic aromatic hydrocarbons in particle-size fractions of coking plant soils from different depth. Environ Geochem Health 35:271–282. doi: 10.1007/s10653-012-9482-y CrossRefGoogle Scholar
  27. Liu M et al (2010) Synthesis of metabolites of polycyclic aromatic hydrocarbons. Mini-Rev Org Chem 7:134–144CrossRefGoogle Scholar
  28. Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured-gas plant sites. Environ Sci Technol 28:A266–A276. doi: 10.1021/es00055a002 CrossRefGoogle Scholar
  29. Mackay D, Shiu WY (1977) Aqueous solubility of polynuclear aromatic hydrocarbons. J Chem Eng Data 22:399–402. doi: 10.1021/je60075a012 CrossRefGoogle Scholar
  30. Mahanty B, Pakshirajan K, Dasu VV (2011) Understanding the complexity and strategic evolution in PAH remediation research. Crit Rev Environ Sci Technol 41:1697–1746. doi: 10.1080/10643389.2010.481586 CrossRefGoogle Scholar
  31. Manzetti S (2013) Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation. Polycycl Aromat Compd 33:311–330. doi: 10.1080/10406638.2013.781042 CrossRefGoogle Scholar
  32. McCarthy JF, Wobber FJ (1993) Manipulation of groundwater colloids for environmental restoration. Lewis, Boca RatonGoogle Scholar
  33. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48CrossRefGoogle Scholar
  34. Mendonca E, Picado A (2002) Ecotoxicological monitoring of remediation in a coke oven soil. Environ Toxicol 17:74–79. doi: 10.1002/tox.10034 CrossRefGoogle Scholar
  35. Mille G, Guiliano M, Kister J (1988) Analysis and evolution of coals: UV fluorescence spectroscopy study (demineralized coals-oxidized coals). Org Geochem 13:947–952. doi: 10.1016/0146-6380(88)90276-8 CrossRefGoogle Scholar
  36. Morillo E et al (2007) Soil pollution by PAHs in urban soils: a comparison of three European cities. J Environ Monit 9:1001. doi: 10.1039/b705955h CrossRefGoogle Scholar
  37. Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration. Environ Sci Technol 35:1103–1110. doi: 10.1021/es000071y CrossRefGoogle Scholar
  38. Parlanti E, Worz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781. doi: 10.1016/s0146-6380(00)00124-8 CrossRefGoogle Scholar
  39. Paul-Dauphin S, Karaca F, Morgan TJ, Millan-Agorio M, Herod AA, Kandiyoti R (2007) Probing size exclusion mechanisms of complex hydrocarbon mixtures: the effect of altering eluent compositions. Energy Fuel 21:3484–3489. doi: 10.1021/ef700410e CrossRefGoogle Scholar
  40. Pernot A, Ouvrard S, Leglize P, Faure P (2013) Protective role of fine silts for PAH in a former industrial soil. Environ Pollut 179:81–87. doi: 10.1016/j.envpol.2013.03.068 CrossRefGoogle Scholar
  41. Reichenberg F, Karlson UG, Gustafsson O, Long SM, Pritchard PH, Mayer P (2010) Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil. Environ Pollut 158:1214–1220. doi: 10.1016/j.envpol.2010.01.031 CrossRefGoogle Scholar
  42. Rollin C, Quiot F (2005) Hydrocarbures aromatiques polycycliques-Final repport n°66244-DESP-R01. INERIS, Aix-en-ProvenceGoogle Scholar
  43. Sánchez-Trujillo MA, Morillo E, Villaverde J, Lacorte S (2013) Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil. Environ Pollut 178:52–58. doi: 10.1016/j.envpol.2013.02.029 CrossRefGoogle Scholar
  44. Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterior Biodegrad 65:859–865. doi: 10.1016/j.ibiod.2011.05.006 CrossRefGoogle Scholar
  45. Schwartz CF, Florentin L, Charpentier D, Muzika S, Morel J-L (2001) Le pédologue en milieux industriels et urbains. Etude de Gestion des Sols 8:135–148Google Scholar
  46. Senturk Z (2013) Analysis of carcinogenic polycyclic aromatic hydrocarbons (PAHs): an overview of modern electroanalytical techniques and their applications. Curr Drug Deliv 10:76–91CrossRefGoogle Scholar
  47. Shuterland JB, Raffi F, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley, New York, pp 296–306Google Scholar
  48. Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697CrossRefGoogle Scholar
  49. Teoh WH, Mammucari R, de Melo S, Foster NR (2013) Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical water. Ind Eng Chem Res 52:5806–5814. doi: 10.1021/ie302124e CrossRefGoogle Scholar
  50. Tiruta-Barna L, Mahjoub B, Faure L, Hanna K, Bayard R, Gourdon R (2006) Assessment of the multi-compound non-equilibrium dissolution behaviour of a coal tar containing PAHs and phenols into water. J Hazard Mater 132:277–286. doi: 10.1016/j.jhazmat.2005.10.013 CrossRefGoogle Scholar
  51. Tsibart AS, Gennadiev AN (2013) Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review). Eurasian Soil Sci 46:728–741CrossRefGoogle Scholar
  52. USEPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites vol OSWER Directive number 9200.4-17P. Office of Solid Waste and Emergency Response, Washington, DCGoogle Scholar
  53. USEPA (2008) Coke production—final report. Emission factor documentation for AP-42 section 12.2. USEPA, Office of Air Quality Planning and Standards, Research Triangle ParkGoogle Scholar
  54. Vulava VM, McKay LD, Driese SG, Menn F-M, Sayler GS (2007) Distribution and transport of coal tar-derived PAHs in fine-grained residuum. Chemosphere 68:554–563. doi: 10.1016/j.chemosphere.2006.12.086 CrossRefGoogle Scholar
  55. Vulava VM, McKay LD, Broholm MM, McCarthy JF, Driese SG, Sayler GS (2012) Dissolution and transport of coal tar compounds in fractured clay-rich residuum. J Hazard Mater 203:283–289. doi: 10.1016/j.jhazmat.2011.12.023 CrossRefGoogle Scholar
  56. Wang C, Guo WD, Guo ZR, Wei J, Zhang B, Ma ZY (2013) Characterization of dissolved organic matter in groundwater from the coastal Dagu River watershed, china using fluorescence excitation-emission matrix spectroscopy. Spectrosc Spectr Anal 33:2460–2465. doi: 10.3964/j.issn.1000-0593(2013)09-2460-06 Google Scholar
  57. Wang K, Chen XX, Zhu ZQ, Huang HG, Li TQ, Yang XE (2014) Dissipation of available benzo a pyrene in aging soil co-contaminated with cadmium and pyrene. Environ Sci Pollut Res 21:962–971. doi: 10.1007/s11356-013-1960-y CrossRefGoogle Scholar
  58. Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil—a review. J Plant Nutr Soil Sci Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 163:229–248. doi: 10.1002/1522-2624(200006)163:3<229::aid-jpln229>3.0.co;2-6 CrossRefGoogle Scholar
  59. Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382–4388. doi: 10.1021/es062397y CrossRefGoogle Scholar
  60. Yu H, Song Y, Tu X, Du E, Liu R, Peng J (2013) Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence. Bioresour Technol 144:595–601. doi: 10.1016/j.biortech.2013.07.025 CrossRefGoogle Scholar
  61. Zhao Z-B, Liu K, Xie W, Pan W-P, Riley JT (2000) Soluble polycyclic aromatic hydrocarbons in raw coals. J Hazard Mater 73:77–85. doi: 10.1016/S0304-3894(99)00178-8 CrossRefGoogle Scholar
  62. Zhou BX, Cai WM, Zou LZ (2003) Thermodynamic functions for transfer of anthracene from water to (water plus alcohol) mixtures at 298.15 K. J Chem Eng Data 48:742–745CrossRefGoogle Scholar
  63. Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50. doi: 10.1016/s0045-6535(98)00166-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ogier Hanser
    • 1
    • 2
    • 3
    • 4
  • Coralie Biache
    • 3
    • 4
  • Marine Boulangé
    • 3
    • 4
  • Stéphane Parant
    • 5
    • 6
  • Catherine Lorgeoux
    • 1
    • 2
  • David Billet
    • 3
    • 4
  • Raymond Michels
    • 1
    • 2
  • Pierre Faure
    • 3
    • 4
  1. 1.Université de Lorraine, GeoRessources, UMR 7359Vandœuvre-lès-NancyFrance
  2. 2.CNRS, GeoRessources, UMR 7359Vandœuvre-lès-NancyFrance
  3. 3.Université de Lorraine, LIEC, UMR 7360Vandœuvre-lès-NancyFrance
  4. 4.CNRS, LIEC, UMR 7360Vandœuvre-lès-NancyFrance
  5. 5.Université de Lorraine, SRSMC, UMR 7565Vandœuvre-lès-NancyFrance
  6. 6.CNRS, SRSMC, UMR 7565Vandœuvre-lès-NancyFrance

Personalised recommendations