Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 5, pp 3383–3396 | Cite as

Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis

  • Xiaoxia Zhu
  • Ying Liu
  • Yanyan Chen
  • Cijiang Yao
  • Zhen Che
  • Jiyu CaoEmail author
Review Article

Abstract

A growing body of evidence has investigated the association between maternal exposure to PM2.5 (particulate matter with aerodynamic diameter 2.5 μm) during pregnancy and adverse pregnancy outcomes. However, the results of those studies are not consistent. To synthetically quantify the relationship between maternal exposure to PM2.5 during pregnancy and pregnancy outcomes (the change in birth weight, low birth weight (LBW), preterm birth (PTB), small for gestational age (SGA), and stillbirth), a meta-analysis of 25 published observational epidemiological studies that met our selection criteria was conducted. Results suggested a 10 μg/m3 increase in PM2.5 was positively associated with LBW (odds ratio (OR) = 1.05; 95 % confidence interval (CI), 1.02–1.07), PTB (OR = 1.10; 95 % CI, 1.03–1.18), and SGA (OR = 1.15; 95 % CI, 1.10–1.20) based on entire pregnancy exposure, and pooled estimate of decrease in birth weight was 14.58 g (95 % CI, 9.86–19.31); however, there was no evidence of a statistically significant effect of per 10 μg/m3 increase in PM2.5 exposure on the risk of stillbirth (OR = 1.18; 95 % CI, 0.69–2.04). With respect to three different gestation periods, no significant risks were found in PTB, stillbirth, and the first trimester on the change of birth weight with a 10 μg/m3 increase in PM2.5. In this study, a comprehensive quantitative analysis of the results show that PM2.5 can increase the risk of LBW, PTB, and SGA; pregnant women need to take effective measures to reduce PM2.5 exposure.

Keywords

LBW Meta-analysis PM2.5 Pregnancy outcomes PTB SGA 

Notes

Acknowledgments

This work received grant from the Science Research Fund of Anhui Province (090413265X). We would like to thank all participants in our study, and also the reviewers and editors for their work.

Conflict of interest

No conflict of interest.

Supplementary material

11356_2014_3458_MOESM1_ESM.pdf (130 kb)
ESM 1 (PDF 130 kb)
11356_2014_3458_MOESM2_ESM.pdf (130 kb)
ESM 2 (PDF 129 kb)
11356_2014_3458_MOESM3_ESM.pdf (130 kb)
ESM 3 (PDF 129 kb)
11356_2014_3458_MOESM4_ESM.pdf (134 kb)
ESM 4 (PDF 133 kb)

References

  1. Amir S, Adam PC, Keeve EN, Aaron JC (2012) Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual Atmos Health 5:369–381CrossRefGoogle Scholar
  2. Basu R, Woodruff TJ, Parker JD, Saulnier L, Schoendorf KC (2004) Comparing exposure metrics in the relationship between PM2.5 and birth weight in California. J Expo Anal Environ Epidemiol 14(5):391–6CrossRefGoogle Scholar
  3. Basu R, Harris M, Sie L, Malig B, Broadwin R, Green R (2014) Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environ Res 128:42–51CrossRefGoogle Scholar
  4. Bell ML, Ebisu K, Belanger K (2007) Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect 115(7):1118–1124CrossRefGoogle Scholar
  5. Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P, Leaderer BP (2010) Prenatal exposure to fine particulate matter and birth weight: variations by particulate constituents and sources. Epidemiology 21(6):884–891CrossRefGoogle Scholar
  6. Behrman RE, Butler AS (2007) Preterm birth: causes, consequences, and prevention/Committee on Understanding Premature Birth and Assuring Healthy Outcomes, Board on Health Sciences Policy. National Academies, WashingtonGoogle Scholar
  7. Billet S, Garcon G, Dagher Z et al (2007) Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ Res 105(2):212–23CrossRefGoogle Scholar
  8. Bosetti C, Nieuwenhuijsen MJ, Gallus S, Cipriani S, La Vecchia C, Parazzini F (2010) Ambient particulate matter and preterm birth or birth weight: a review of the literature. Arch Toxicol 84:447–460CrossRefGoogle Scholar
  9. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C (2008) A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect 116(5):680–686CrossRefGoogle Scholar
  10. Chang HH, Reich BJ, Miranda ML (2012) Time-to-event analysis of fine particle air pollution and preterm birth: results from North Carolina, 2001–2005. Am J Epidemiol 175(2):91–8CrossRefGoogle Scholar
  11. Chang HH, Reich BJ, Miranda ML (2013) A spatial time-to-event approach for estimating associations between air pollution and preterm birth. J R Stat Soc Ser C Appl Stat 62(2). doi: 10.1111/j.1467-9876.2012.01056.x
  12. Che Z, Zhu X, Yao C, Liu Y, Chen Y, Cao J, Liang C, Lu Y (2014) The association between the C-509 T and T869C polymorphisms of TGF-β1 gene and the risk of asthma: a meta-analysis. Hum Immunol 75(2):141–150CrossRefGoogle Scholar
  13. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129CrossRefGoogle Scholar
  14. Cristina B, Mark J, Nieuwenhuijsen SG, Sonia C (2010) Ambient particulate matter and preterm birth or birth weight: a review of the literature. Arch Toxicol 84:447–460CrossRefGoogle Scholar
  15. Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, Gehring U, Glinianaia SV, Gouveia N, Ha EH (2013) Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect 121(3):267–373CrossRefGoogle Scholar
  16. Darrow LA, Klein M, Strickland MJ, Mulholland JA, Tolbert PE (2011) Ambient air pollution and birth weight in full-term infants in Atlanta, 1994–2004. Environ Health Perspect 119(5):731–737CrossRefGoogle Scholar
  17. Ebisu K, Bell ML (2012) Airborne PM2.5 chemical components and low birth weight in the northeastern and mid-Atlantic regions of the United States. Environ Health Perspect 120(12):1746–1752Google Scholar
  18. Faiz AS, Rhoads GG, Demissie K, Kruse L, Lin Y, Rich DQ (2012) Ambient air pollution and the risk of stillbirth. Am J Epidemiol 176(4):308–16CrossRefGoogle Scholar
  19. Faiz AS, Rhoads GG, Demissie K, Lin Y, Kruse L, Rich DQ (2013) Does ambient air pollution trigger stillbirth. Epidemiology 24(4):538–544CrossRefGoogle Scholar
  20. Geer LA, Weedon J, Bell ML (2012) Ambient air pollution and term birth weight in Texas from 1998 to 2004. J Air Waste Manag Assoc 62(11):1285–1295CrossRefGoogle Scholar
  21. Gehring U, Wijga AH, Fischer P, de Jongste JC, Kerkhof M, Koppelman GH, Smit HA, Brunekreef B (2011) Traffic-related air pollution, preterm birth and term birth weight in the PIAMA birth cohort study. Environ Res 111(1):125–135CrossRefGoogle Scholar
  22. Gray SC, Edwards SE, Miranda ML (2010) Assessing exposure metrics for PM and birth weight models. J Expo Sci Environ Epidemiol 20(5):469–77CrossRefGoogle Scholar
  23. Gray SC, Edwards SE, Schultz BD, Miranda ML (2014) Assessing the impact of race, social factors and air pollution on birth outcomes: a population-based study. Environ Health 13(1):4CrossRefGoogle Scholar
  24. Hannam K, McNamee R, Baker P, Sibley C, Agius R (2014) Air pollution exposure and adverse pregnancy outcomes in a large UK birth cohort: use of a novel spatio-temporal modelling technique. Scand J Work Environ Health. doi: 10.5271/sjweh.3423
  25. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Statist Med 21:1539–1558CrossRefGoogle Scholar
  26. Hogue CJ, Buehler JW, Strauss LT, Smith JC (1987) Overview of the National Infant Mortality Surveillance (NIMS) project—design, methods, results. Public Health Rep 102(2):126–138Google Scholar
  27. Huynh M, Woodruff TJ, Parker JD, Schoendorf KC (2006) Relationships between air pollution and preterm birth in California. Paediatr Perinat Epidemiol 20(6):454–461CrossRefGoogle Scholar
  28. Hyder A, Lee HJ, Ebisu K, Koutrakis P, Belanger K, Bell ML (2014) PM2.5 exposure and birth outcomes: use of satellite- and monitor-based data. Epidemiology 25(1):58–67CrossRefGoogle Scholar
  29. Jalaludin B, Mannes T, Morgan G, Lincoln D, Sheppeard V, Corbett S (2007) Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia. Environ Health 6:16CrossRefGoogle Scholar
  30. Jedrychowski W, Bendkowska I, Flak E et al (2004) Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. Environ Health Perspect 112(14):1398–402CrossRefGoogle Scholar
  31. Jedrychowski W, Perera F, Mrozek-Budzyn D et al (2009) Gender differences in fetal growth of newborns exposed prenatally to airborne fine particulate matter. Environ Res 109(4):447–56CrossRefGoogle Scholar
  32. Jongbae H, James JS, Okhee Y, Domyung P (2014) Fine particle air pollution and mortality importance of specific sources and chemical species. Epidemiology 25:379–388CrossRefGoogle Scholar
  33. Kloog I, Melly SJ, Ridgway WL, Coull BA, Schwartz J (2012) Using new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in Massachusetts. Environ Health 11:40. doi: 10.1186/1476-069X-11-40 CrossRefGoogle Scholar
  34. Kreyling WG, Semmler M, Erbe F et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65(20):1513–30CrossRefGoogle Scholar
  35. Laurent O, Wu J, Li L, Chung J, Bartell S (2013) Investigating the association between birth weight and complementary air pollution metrics: a cohort study. Environ Health 12:18CrossRefGoogle Scholar
  36. Lee PC, Roberts JM, Catov JM, Talbott EO, Ritz B (2013) First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA. Matern Child Health J 17(3):545–555CrossRefGoogle Scholar
  37. Luo Z-C, Wilkins R, Kramer MS (2006) Effect of neighborhood income and maternal education on birth outcomes: a population-based study. Can Med Assoc J 174:1415–1421CrossRefGoogle Scholar
  38. Madsen C, Gehring U, Walker SE et al (2010) Ambient air pollution exposure, residential mobility and term birth weight in Oslo, Norway. Environ Res 110(4):363–71CrossRefGoogle Scholar
  39. Mannes T, Jalaludin B, Morgan G, Lincoln D, Sheppeard V, Corbett S (2005) Impact of ambient air pollution on birth weight in Sydney, Australia. Occup Environ Med 62(8):524–530CrossRefGoogle Scholar
  40. Miranda M, Maxson P, Edwards S (2009) Environmental contributions to disparities in pregnancy outcomes. Epi Rev 31(1):67–83CrossRefGoogle Scholar
  41. Morello-Frosch R, Jesdale BM, Sadd JL, Pastor M (2010) Ambient air pollution exposure and full-term birth weight in California. Environ Health 9:44CrossRefGoogle Scholar
  42. Parker JD, Woodruff TJ, Basu R, Schoendorf KC (2005) Air pollution and birth weight among term infants in California. Pediatrics 115(1):121–128Google Scholar
  43. Parker JD, Woodruff TJ (2008) Influences of study design and location on the relationship between particulate matter air pollution and birthweight. Paediatr Perinat Epidemiol 22(3):214–227CrossRefGoogle Scholar
  44. Pedersen M, Giorgis-Allemand L, Bernard C et al (2013) Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med 1(9):695–704CrossRefGoogle Scholar
  45. Pereira G, Belanger K, Ebisu K, Bell ML (2014) Fine particulate matter and risk of preterm birth in Connecticut in 2000–2006: a longitudinal study. Am J Epidemiol 179(1):67–74CrossRefGoogle Scholar
  46. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JK (2007) Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am J Epidemiol 166(9):1045–52CrossRefGoogle Scholar
  47. Rudra CB, Williams MA, Sheppard L, Koenig JQ, Schiff MA (2011) Ambient carbon monoxide and fine particulate matter in relation to preeclampsia and preterm delivery in western Washington State. Environ Health Perspect 119(6):886–92CrossRefGoogle Scholar
  48. Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B (2010) Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual Atmos Health 5(4):369–381CrossRefGoogle Scholar
  49. Savitz DA, Bobb JF, Carr JL et al (2014) Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, New York. Am J Epidemiol 179(4):457–66CrossRefGoogle Scholar
  50. Seaton A, MacNee W, Donaldson K, Godden D (1995) Particulate air pollution and acute health effects. Lancet 345(8943):176–8CrossRefGoogle Scholar
  51. Selevan SG, Kimmel CA, Mendola P (2000) Identifying critical windows of exposure for children’s health. Environ Health Perspect 108:451–455CrossRefGoogle Scholar
  52. Slama R, Darrow L, Parker J et al (2008) Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect 116(6):791–8CrossRefGoogle Scholar
  53. Shah PS, Balkhair T (2011) Air pollution and birth outcomes: a systematic review. Environ Int 37(2):498–516CrossRefGoogle Scholar
  54. Subramanian SV, Chen JT, Rehkopf DH, Waterman PD, Krieger N (2006) Comparing individual-and area-based socioeconomic measures for the surveillance of health disparities: a multilevel analysis of Massachusetts births, 1989–1991. Am J Epidemiol 64:823–834CrossRefGoogle Scholar
  55. Stieb DM, Chen L, Eshoul M, Judek S (2012) Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res 117:100–111CrossRefGoogle Scholar
  56. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Statat Tech Bull 8:15–17Google Scholar
  57. Wilhelm M, Ritz B (2005) Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect 113(9):1212–1221CrossRefGoogle Scholar
  58. Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B (2011) Traffic-related air toxics and preterm birth: a population-based case–control study in Los Angeles County, California. Environ Health 10:89CrossRefGoogle Scholar
  59. Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B (2012) Traffic-related air toxics and term low birth weight in Los Angeles County, California. Environ Health Perspect 120(1):132–8CrossRefGoogle Scholar
  60. Woodruff TJ, Parker JD, Adams K, Bell ML, Gehring U, Glinianaia S et al (2010) International Collaboration on Air Pollution and Pregnancy Outcomes (ICAPPO). Int J Environ Res Public Health 7:2638–2652CrossRefGoogle Scholar
  61. Wu J, Ren C, Delfino RJ, Chung J, Wilhelm M, Ritz B (2009) Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the south coast air basin of California. Environ Health Perspect 117(11):1773–1779CrossRefGoogle Scholar
  62. Wu J, Wilhelm M, Chung J, Ritz B (2011) Comparing exposure assessment methods for traffic-related air pollution in an adverse pregnancy outcome study. Environ Res 111(5):685–92CrossRefGoogle Scholar
  63. Zhang YG, Li XB, Zhang J, Huang J, He C, Tian C et al (2011) The I/D polymorphism of angiotensin-converting enzyme gene and asthma risk: a meta-analysis. Allergy 66:197–205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiaoxia Zhu
    • 1
  • Ying Liu
    • 1
  • Yanyan Chen
    • 1
  • Cijiang Yao
    • 1
  • Zhen Che
    • 1
  • Jiyu Cao
    • 2
    Email author
  1. 1.Department of Occupational and Environmental, School of Public HealthAnhui Medical UniversityHefeiChina
  2. 2.The Teaching Center for Preventive Medicine, School of Public HealthAnhui Medical UniversityHefeiChina

Personalised recommendations