Environmental Science and Pollution Research

, Volume 22, Issue 1, pp 721–732 | Cite as

Remediation of sediment and water contaminated by copper in small-scaled constructed wetlands: effect of bioaugmentation and phytoextraction

Research Article

Abstract

The use of plants and microorganisms to mitigate sediment contaminated by copper was studied in microcosms that mimic the functioning of a stormwater basin (SWB) connected to vineyard watershed. The impact of phytoremediation and bioaugmentation with siderophore-producing bacteria on the fate of Cu was studied in two contrasted (batch vs. semi-continuous) hydraulic regimes. The fate of copper was characterised following its discharge at the outlet of the microcosms, its pore water concentration in the sediment, the assessment of its bioaccessible fraction in the rhizosphere and the measurement of its content in plant tissues. Physico-chemical (pH, redox potential) and biological parameters (total heterotrophic bacteria) were also monitored. As expected, the results showed a clear impact of the hydraulic regime on the redox potential and thus on the pore water concentration of Cu. Copper in pore water was also dependent on the frequency of Cu-polluted water discharges. Repeated bioaugmentation increased the total heterotrophic microflora as well as the Cu bioaccessibility in the rhizosphere and increased the amount of Cu extracted by Phragmites australis by a factor of ~2. Sugar beet pulp, used as a filter to avoid copper flushing, retained 20 % of outcoming Cu and led to an overall retention of Cu higher than 94 % when arranged at the outlet of microcosms. Bioaugmentation clearly improved the phytoextraction rate of Cu in a small-scaled SWB designed to mimic the functioning of a full-size SWB connected to vineyard watershed.

Highlights

- Cu phytoextraction in constructed wetlands much depends on the hydraulic regime and on the frequency of Cu-polluted water discharges

- Cu phytoextraction increases with time and plant density

- Cu bioaccessibility can be increased by bioaugmentation with siderophore-producing bacteria

Keywords

Bioaccessibility Copper Phytoremediation Phragmites australis Siderophore-producing bacteria 

Abbreviations

3,4-DCA

3,4-Dichloroaniline

ANOVA

Analysis of variance

BI

Batch-inoculated

BNI

Batch-non-inoculated

CEC

Cation exchange capacity

CFU

Colony forming unit

CI

Semi-continuous-inoculated

CNI

Semi-continuous-non-inoculated

EDTA

Ethylenediaminetetraacetic acid

HDPE

High-density polyethylene

ICP-AES

Inductively coupled plasma–atomic emission spectroscopy

LB medium

Luria Bertani medium

NPI

Non-planted-inoculated

NPNI

Non-planted-non-inoculated

PGPR

Plant-growth-promoting rhizobacteria

PI

Planted-inoculated

PNI

Planted-non-inoculated

PVC

Polyvinylchloride

SBP

Sugar beet pulp

SWB

Stormwater basin

THM

Total heterotrophic microflora

Notes

Acknowledgments

Financial support of this work was provided by the European Union through the project LIFE ENVIRONMENT ArtWET “Mitigation of agricultural nonpoint-source pesticides pollution and phytoremediation in artificial wetland ecosystems”.

Supplementary material

11356_2014_3406_MOESM1_ESM.doc (71 kb)
Supplementary Data 1 (DOC 71 kb)
11356_2014_3406_MOESM2_ESM.doc (28 kb)
Supplementary Data 2 (DOC 27 kb)

References

  1. Ailstock MS, Norman CM, Bushmann PJ (2001) Common reed Phragmites australis: control and effects upon biodiversity in freshwater nontidal wetlands. Restor Ecol 9:49–59CrossRefGoogle Scholar
  2. Albarracín VH, Amoroso MJ, Abate CA (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79(2):131–137CrossRefGoogle Scholar
  3. Andreazza R, Okeke BC, Lambais MR, Bortolon L, de Melo GWB, de Oliveira Camargo FA (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81:1149–1154CrossRefGoogle Scholar
  4. Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot Physiol Ecol Aquat Macrophytes 39:75–88Google Scholar
  5. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479CrossRefGoogle Scholar
  6. Banas D, Marin B, Skraber S, Chopin EIB, Zanella A (2010) Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France). Environ Pollut 158:476–482CrossRefGoogle Scholar
  7. Bois P, Huguenot D, Jezequel K, Lollier M, Cornu J-Y, Lebeau T (2013) Herbicide mitigation in microcosms simulating stormwater basins subject to polluted water inputs. Water Res 47(3):1123–1135CrossRefGoogle Scholar
  8. Bois P, Huguenot D, Norini M-P, Ul Haque M, Vuilleumier S, Lebeau T (2011) Herbicide degradation and copper complexation by bacterial mixed cultures from a vineyard stormwater basin. J Soils Sediments 1–14Google Scholar
  9. Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645CrossRefGoogle Scholar
  10. Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975CrossRefGoogle Scholar
  11. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286CrossRefGoogle Scholar
  12. Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6:261–279CrossRefGoogle Scholar
  13. Bruus Pedersen M, Kjær C, Elmegaard N (2000) Toxicity and bioaccumulation of copper to black bindweed (Fallopia convolvulus) in relation to bioavailability and the age of soil contamination. Arch Environ Contam Toxicol 39:431–439CrossRefGoogle Scholar
  14. Butterly CR, Bünemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416CrossRefGoogle Scholar
  15. Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31:861–86CrossRefGoogle Scholar
  16. Cornu JY, Huguenot D, Jezequel K, Lebeau T (2013) Raw sugar beet pulp sorption behaviour in mixture with sand and sediment. Isotherms and microcosms approaches. J Soils Sediments 13(1):220–229CrossRefGoogle Scholar
  17. Das C, Bhowal A, Datta S (2011) Bioremediation of copper-contaminated soil by co-application of bioaugmentation and biostimulation with organic nutrient. Bioremediation J 15(2):90–98CrossRefGoogle Scholar
  18. Dickopp J, Kazda M, Cizkova H (2011) Differences in rhizome aeration of Phragmites australis in a constructed wetland. Ecol Eng 37:1647–1653CrossRefGoogle Scholar
  19. Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilotscale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490CrossRefGoogle Scholar
  20. Dusek J, Picek T, Cízková H (2008) Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: diel, seasonal and spatial fluctuations. Ecol Eng 34:223–232CrossRefGoogle Scholar
  21. Flores-Vélez LM, Ducaroir J, Jaunet AM, Robert M (1996) Study of the distribution of copper in an acid sandy vineyard soil by three different methods. Eur J Soil Sci 47:523–532CrossRefGoogle Scholar
  22. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  23. Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schütz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett 7(3):205–231CrossRefGoogle Scholar
  24. Hoegy F, Lee X, Noel S, Rognan D, Mislin GLA, Reimmann C, Schalk IJ (2009) Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent Pseudomonads. J Biol Chem 284:14949–57CrossRefGoogle Scholar
  25. Huguenot D, Bois P, Jezequel K, Cornu JY, Lebeau T (2010) Selection of low cost materials for the sorption of copper and herbicides as single or mixed compounds in increasing complexity matrices. J Hazard Mater 182:18–26CrossRefGoogle Scholar
  26. JORF, 2007. Arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R. 1321–2, R. 1321–3, R. 1321–7 et R. 1321–38 du code de la santé publique.Google Scholar
  27. Kadlec RH (2000) The inadequacy of first-order treatment wetland models. Ecol Eng 15:105–119CrossRefGoogle Scholar
  28. Knox AS, Paller MH, Nelson EA, Specht WL, Halverson NV, Gladden JB (2006) Metal distribution and stability in constructed wetland sediment. J Environ Qual 35:1948–1959CrossRefGoogle Scholar
  29. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522CrossRefGoogle Scholar
  30. Lebeau T., 2011. Bioaugmentation for in situ soil remediation: how to ensure the success of such a process. In: Ajay Singh, Nagina Parmar and Ramesh and C. Kuhad (Eds.). Bioaugmentation, Biostimulation and Biocontrol, chapter 11. “Soil Biology” series, SpringerGoogle Scholar
  31. Lebourg A, Sterckeman T, Ciesielski H, Proix N (1996) Intérêt de différents réactifs d’extraction chimique pour l’évaluation de la biodisponibilité des métaux en traces du sol. Agronomie 16:201–215CrossRefGoogle Scholar
  32. Lesage E, Rousseau DPL, Van de Moortel A, Tack FMG, De Pauw N, Verloo MG (2007) Effects of sorption, sulphate reduction, and Phragmites australis on the removal of heavy metals in subsurface flow constructed wetland microcosms. Water Sci Technol 56:193–198CrossRefGoogle Scholar
  33. Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards—a mini review. Environ Pollut 167:16–26CrossRefGoogle Scholar
  34. Maillard E, Payraudeau S, Gregoire C, Imfeld G (2011) Removal of pesticide mixtures in a storm water wetland collecting runoff from a vineyard catchment. Sci Total Environ 409:2317–2324CrossRefGoogle Scholar
  35. Meyer JL (1985) A detention basin/artificial wetland treatment system to renovate stormwater runoff from urban, highway, and industrial areas. Wetlands 5:135–146CrossRefGoogle Scholar
  36. Özdemir Z, Sagiroglu A (2000) Salix acmophylla, Tamarix smyrnensis and Phragmites australis as biogeochemical indicators for copper deposits in ElazIg, Turkey. J Asian Earth Sci 18:595–601CrossRefGoogle Scholar
  37. Pehlivan E, YanIk BH, Ahmetli G, Pehlivan M (2008) Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour Technol 99:3520–3527CrossRefGoogle Scholar
  38. Płociniczak T, Kukla M, Watroba R, Piotrowska-Seget Z (2013) The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Chemosphere 91:1332–1337CrossRefGoogle Scholar
  39. Pulford, I., Flowers, H., 2006. Environmental chemistry at a glance. Wiley BlackwellGoogle Scholar
  40. Raaijmakers J, Van der Sluis I, Koster M, Bakker P, Weisbeek R, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135CrossRefGoogle Scholar
  41. Ribolzi O, Valles V, Gomez L, Voltz M (2002) Speciation and origin of particulate copper in runoff water from a Mediterranean vineyard catchment. Environ Pollut 117:261–271CrossRefGoogle Scholar
  42. Segura R, Arancibia V, Zúñiga MC, Pastén P (2006) Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho river in Santiago, Chile. J Geochem Explor 91:71–80CrossRefGoogle Scholar
  43. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefGoogle Scholar
  44. Sinicrope TL, Langis R, Gersberg RM, Busnardo MJ, Zedler JB (1992) Metal removal by wetland mesocosms subjected to different hydroperiods. Ecol Eng 1:309–322CrossRefGoogle Scholar
  45. So LM, Chu LM, Wong PK (2003) Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere 52:1499–1503CrossRefGoogle Scholar
  46. Speelmans M, Vanthuyne DRJ, Lock K, Hendrickx F, Du LG, Tack FMG, Janssen CR (2007) Influence of flooding, salinity and inundation time on the bioavailability of metals in wetlands. Sci Total Environ 380:144–153CrossRefGoogle Scholar
  47. Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40CrossRefGoogle Scholar
  48. Walker DJ, Hurl S (2002) The reduction of heavy metals in a stormwater wetland. Ecol Eng 18:407–414CrossRefGoogle Scholar
  49. Wanko A, Tapia G, Mose R, Gregoire C (2009) Adsorption distribution impact on preferential transport within horizontal flow constructed wetland (HFCW). Ecol Model 220:3342–3352CrossRefGoogle Scholar
  50. Ye ZH, Baker AJM, Wong MH, Willis AJ (2003) Copper tolerance, uptake and accumulation by Phragmites australis. Chemosphere 50:795–800CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Equipe Dépollution Biologique des SolsUniversité de Haute Alsace, EA 3991 LVBE (Laboratoire Vigne Biotechnologies et Environnement)ColmarFrance
  2. 2.Laboratoire Géomatériaux et Environnement (EA 4508), UPEMUniversité Paris-EstParisFrance
  3. 3.Département de Mécanique, Equipe MécaFluLaboratoire ICube (UMR 7357 CNRS/Unistra/ENGEES/INSA)StrasbourgFrance
  4. 4.INRA, UMR 1391 ISPAVillenave d’OrnonFrance
  5. 5.UMR 6112 LPGN (Laboratoire de Planétologie et Géodynamique de Nantes)LUNAM, Université de NantesNantesFrance

Personalised recommendations